Navigation Links
Penn scientists carve functional nanoribbons using super-heated, nano-sized particles of iron
Date:7/31/2008

PHILADELPHIA - Due to its remarkable electronic properties, few layer graphene, or FLG, has emerged as a promising new material for use in post-silicon devices that incorporate the quantum effects that emerge at the nanoscale. Now, physicists at the University of Pennsylvania have demonstrated a new method by which FLG can be etched along flawless, crystallographic axes by using thermally activated nanoparticles, a technique that results in atomically precise, macroscopic length ribbons of graphene. The advance could enable atomically precise, and far simpler, construction of integrated circuits from single graphene sheets with a wide range of technological applications.

A.T. Charlie Johnson, professor in the Department of Physics and Astronomy at Penn, and his team have demonstrated this new etching process which relies on catalytic metal particles to etch the graphene along precise atomic directions.

Johnson's team is now attempting to refine their control of the process and test Penn's capability to fabricate devices whose properties will reflect the intrinsic quality of atomically precise graphene.

"Graphene is a great material for electronics, but it would be even better if it were possible to create devices with crystallographic edges, that is, edges where the atoms lie along single lines in the graphene plane," Johnson said. "Standard etching techniques being used in the semiconductor industry do not allow this sort of fabrication. Instead, they produce rough edges with lots of atomic scale defects that limit the performance of the fabricated devices."

Specifically, the Penn team investigated the construction of atomically precise graphene nanoribbons in which charge-carrying electrons are confined in a nearly two-dimensional, lateral plane and the electronic properties of the ribbon are controlled by the width and specific crystallographic orientation of the material. These structures hold enormous promise as nanoscale devices, with the advantage that graphene's two-dimensionality lends itself to existing device architectures based on planar geometries.

Attempts with current nanofabrication standards such as lithography and plasma etching, however, have left rough edges to the nanoribbons that affect their performance. Until now, these structures have been impossible to achieve because the rough, non-crystalline edges of the graphene, resulting from current state-of-the-art nanolithography techniques, are considered the limiting factor to attaining useful performance from nanoscale graphene devices. Even atomic-scale flaws would derail electrical conductivity of any graphene transistors. Johnson's technique, employing hot iron nanoparticles to carve out patterns in graphene sheets, appears to be the first detailed example of such precise fabrication.

To create these ribbons, researchers deposited graphene onto a silicon substrate, coated them in iron nitrate and heated them to 900 C. At that temperature, the iron forms particles with diameters of about 15 nm, spreads across the surface of the substrate and etches away trenches in the graphene sheets.

By identifying areas where two iron nanoparticles carved parallel tracks like skis in fresh snow, researchers managed to isolate nanoribbons as narrow as 15 nm and as much as a few micrometers long. The nanoparticles travel predominantly along a single direction, although why this was so is a question for another study. However, scientists also observed the existence of other paths of nanoparticles, at angles of 30 and 60, suggesting possibly that the motion of the iron nanoparticles and hence the etching is related to the atomic structure of graphene, a honeycomb shape employing those measurements. This natural phenomena could be used in the future to fabricate devices and circuits with those required angles.


'/>"/>

Contact: Jordan Reese
jreese@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert

Related biology technology :

1. Gladstone scientists uncover potential mechanism of memory loss in Alzheimers disease
2. Three Studies by Independent Scientists Highlighting Pressure Cycling Technology (PCT) to be Presented this Week at the British Mass Spectrometry Societys 29th Annual Meeting
3. Social Network for Scientists Marks Ten Years Online
4. Scientists synthesize memory in yeast cells
5. Scientists synthesize memory in yeast cells
6. University of Leicester scientists discover technique to help friendly bacteria
7. Scientists discover how cancer may take hold
8. Yale scientists make 2 giant steps in advancement of quantum computing
9. New Scientists Boost Disease-based Research at Boston Biomedical Research Institute
10. Scientists say sabercat bit like a pussycat
11. New Corporate Website Launched - Focus on Life Scientists, Flow Cytometrists, & Clinicians
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/23/2017)... NEW YORK , Feb. 23, 2017 ... a leading digital health company, and Digital ... telemedicine and remote patient monitoring, announce they are ... DN Telehealth maximizes collaboration compatibility ... extending consultations beyond a physical clinical setting to ...
(Date:2/23/2017)... ATLANTA , Feb. 23, 2017  In Atlanta, it ... art, fashion, and culture intertwine to create an expressive and ... often reflect this energy and contribute to it. ... , Hair Fairies seeks to carry on that ... The Atlanta salon is the newest ...
(Date:2/23/2017)... ... 23, 2017 , ... David Nolte, PhD accepted Purdue University’s ... Purdue Research Park of West Lafayette, Indiana. , The top commercialization award ... and success with, commercializing discoveries from Purdue research. “This award is truly an ...
(Date:2/23/2017)... SAN DIEGO and SAN FRANCISCO ... , a privately-held regenerative medicine company, and Beyond Type ... living with type 1 diabetes, today announced a grant ... develop a functional cure for type 1 and other ... decade, ViaCyte has been developing innovative stem cell-derived cell ...
Breaking Biology Technology:
(Date:2/13/2017)... Feb. 13, 2017 Former 9/11 Commission border ... Committee, Janice Kephart of Identity Strategy Partners, ... Donald Trump,s "Executive Order: Protecting the Nation From ... 2017):  "As President Trump,s ,Travel Ban, Executive ... now essentially banned the travel ban, it is important ...
(Date:2/8/2017)... , Feb. 7, 2017 Report Highlights ... The global ... reach $11.4 billion by 2021, growing at a compound annual ... - An overview of the global markets for synthetic biology. ... estimates for 2016, and projections of compound annual growth rates ...
(Date:2/7/2017)... , February 7, 2017 Ipsidy ... Solutions Corporation [OTC: IDGS], ("Ipsidy" or the "Company") a ... transaction processing services, is pleased to announce the following ... Effective January 31, 2017, Philip D. ... Directors, CEO and President.  An experienced payment industry professional ...
Breaking Biology News(10 mins):