Navigation Links
Penn researchers show single drug and soft environment can increase platelet production

PHILADELPHIA Humans produce billions of clot-forming platelets every day, but there are times when there aren't enough of them, such as with certain diseases or during invasive surgery. Now, University of Pennsylvania researchers have demonstrated that a single drug can induce bone marrow cells called megakaryocytes to quadruple the number of platelets they produce.

Jae-Won Shin, a graduate student of pharmacology in Penn's Perelman School of Medicine, and Dennis E. Discher, professor in the Department of Chemical and Biomolecular Engineering in the School of Engineering and Applied Science, led the research. They collaborated with Joe Swift and Ph.D. student Kyle R. Spinler, also of Chemical and Biomolecular Engineering.

Their research was published in the journal Proceedings of the National Academy of Sciences.

Megakaryocytes are the large bone marrow cells that produce platelets, the smaller cell fragments that form clots to seal blood vessels when the vessels are damaged. The amount of platelets they produce relates to their size. Unlike most other cells, when megakaryocytes copy their DNA, they don't split into two cells but continue to grow larger.

"These cells take the relatively unusual step of becoming bigger and bigger, adding multiple nuclei, which you don't see with other cell types," Discher said. "Mature, multinucleated megakaryocytes are better than uni- or bi-nucleated ones; they have more mass and are ready to make more platelets."

When mature, the megakaryocyte will extend a tendril into a neighboring blood vessel; the flow of blood pulls off pieces of the cell, forming platelets. The motor protein myosin-II plays a number of roles in this process; by inhibiting it with a drug known as belebbistatin, the researchers caused megakaryocytes to make up to four times as many platelets as when it is active.

Myosin-II is responsible for many body systems that require contractile tension, such as flexing one's muscles. In many cells, it is responsible for the integrity of the outer membranes, for cell division and for key aspects of adhesion. Because megakaryocytes are best when they are large, multi-nucleated and fragment easily, inhibiting myosin-II helps produce more platelets in three distinct ways.

"The first factor is when cells normally divide, there is a contracting force between the dividing cells that cleave them apart," Shin said. "But if you inhibit myosin, there is no contracting force and cells grow without dividing. That's how they become multi-nucleated and how the cell mass becomes bigger.

"The second factor is cytoskeletal stiffness and tension in the cell. When myosin is active, the cell is stiff and tense like well-toned muscle, but if you inhibit the myosin, the cell becomes flaccid and more easy to push around and fragment," he said.

"The third factor is that cells are able to sense the stiffness of their microscopic environment and react to it, which is also regulated by cellular contractivity," Shin said. "Adhering to bone inhibits megakaryocyte growth; without myosin-II, they grow as if they were adhering to something soft."

By testing the megakaryocytes' growth in different cell culture dishes and gels, the researchers were also able to show that a soft matrix, similar to squishy bone marrow, induced more platelet production than a rigid matrix.

After growing the platelets in Petri dishes saturated with the myosin-II inhibitor blebbistatin, the megakaryocytes were soft enough to spontaneously fragment into platelets. Because platelets need functioning myosin-II to form rigid clots, the researchers subsequently washed away the drug to show that the platelets could still activate.

While the researchers also transplanted blebbistatin-treated human megakaryocytes into genetically modified mice to show that they maintained their increased platelet production within living systems, most of their work was done in vitro to demonstrate that platelets could be successfully synthesized in a lab.

"Platelet transfusions are harder and harder to come by. Not only are there contamination issues, but platelets are also very short-lived," Shin said. "They only last about a week in a transfusion bag. The ability to make them in large quantities could save lives."


Contact: Evan Lerner
University of Pennsylvania

Related biology technology :

1. SANYO and BD Biosciences Collaborate to Offer Researchers Valuable Technology and Research Tools
2. TUM researchers develop environmentally friendly process to improve storage stability of probiotics
3. Researchers image graphene electron clouds, revealing how folds can harm conductivity
4. Researchers clarify properties of confined water within single-walled carbon nanotube pores
5. Researchers engineer the environment for stem cell development to control differentiation
6. Penn researchers break light-matter coupling strength limit in nanoscale semiconductors
7. Researchers From More Than 30 Countries Share Findings About the Use of Ultrasound in the Prevention, Diagnosis and Treatment of Heart Disease
8. Singapore researchers invent broadband graphene polarizer
9. Livermore researchers develop battery-less chemical detector
10. Researchers create terahertz invisibility cloak
11. UCLA researchers now 1 step closer to controlled engineering of nanocatalysts
Post Your Comments:
(Date:11/24/2015)... , ... November 24, 2015 , ... ... healthy metabolism. But unless it is bound to proteins, copper is also toxic ... (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of ...
(Date:11/24/2015)... -- --> --> ... Market by Product & Services (Primer, Probe, Custom Oligos, ... End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) - Global ... expected to reach USD 1,918.6 Million by 2020 from ... 10.1% during the forecast period. Browse 183 ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
(Date:11/24/2015)... ... 2015 , ... In harsh industrial processes, the safety of ... can represent a weak spot where leaking process media is a possible hazard. ... , which are designed to tolerate extreme process conditions. They combine rugged design ...
Breaking Biology Technology:
(Date:10/29/2015)... , Oct. 29, 2015  Connected health pioneer, ... driving the explosion of technology-enabled health and wellness, and ... new book, The Internet of Healthy Things ... sensors or smartphones even existed, Dr. Kvedar, vice president, ... of health care delivery, moving care from the hospital ...
(Date:10/27/2015)... , October 27, 2015 ... Automated Semantic Gaze Mapping technology (ASGM) automatically maps data ... Eye Tracking Glasses , so that they can ... --> Munich, Germany , October ... automatically maps data from mobile eye tracking videos created ...
(Date:10/26/2015)... NEWARK, Calif. , Oct. 26, 2015  Delta ... convenient biometric authentication to mobile and PC devices, announced ... Fujitsu,s smartphone, the arrows NX F-02H launched by NTT ... arrows NX F-02H is the second smartphone to include ... this technology in ARROWS NX F-04G in May 2015, ...
Breaking Biology News(10 mins):