Navigation Links
Penn collaboration leads to simpler method for building varieties of nanocrystal superlattices
Date:7/23/2010

PHILADELPHIA - Collaboration by chemists, physicists and materials scientists at the University of Pennsylvania has created a simple and inexpensive method to rapidly grow centimeter-scale membranes of binary nanocrystal superlattices, or BNSLs, by crystallizing a mixture of nanocrystals on a liquid surface.

The study demonstrates a new and spontaneous way to grow long-range-ordered BNSL membranes with rigorous control of nanocrystal size, shape and concentration by combining two types of nanocrystals and assembling them during a drying stage at the surface of a liquid under normal conditions.

The method overcomes several limitations of the existing assembly strategies and produces large, free-standing membranes that can be transferred to any desired substrate such as silicon wafers, glass slides and plastic substrates, allowing the nanocryatalline films to be introduced at any stage in the device fabrication process.

The team demonstrated the potential for integrating these novel materials by growing millimeter-scale superlattice membranes containing iron oxide nanocrystals of two different sizes and incorporating the membranes into magnetoresistive devices. Measurements showed that the magnetoresistance of the resulting device was dependent on the structure of the BNSL and therefore controllable.

The physical properties intrinsic in these nanocrystals -- nanometer sized crystalline building blocks offer a modern twist on the studies of interfacial assembly that reach as far back as Penn founder Benjamin Franklin and his studies of oil spreading on water in the 1770s.

Single and multi-component nanocrystal films are already under intense investigation by researchers as enablers of novel optical technologies that range from low-cost solar cells, light-emitting diodes and photo detectors and also in electronic systems that include field-effect transistors and solid-state thermoelectric coolers and generators and magnetic technologies that include magnetic recording materials and magnetic sensors and even as tailored electrocatalytic and photocatalytic films.

Co-assembly of two types of nanocrytals into BNSLs provides a low-cost, modular route to program the self assembly of materials with a precisely controlled combinations of properties. Advances in these complex interfacial assemblies and improvements in the transfer of single-component nanocrystal membranes in the past few years have heightened anticipation that this control could be extended to much more complex systems.

This Penn study establishes a route to free-standing large-area BNSLs membranes with the added ability to laminate them on any arbitrary substrate.

"Fundamentally, growing BNSLs on a liquid surface will shed light on the mechanisms of multi-component nanocrystal assembly, which are critical to new concepts in self-assembly based nanomanufacturing," said Christopher B. Murray, the Richard Perry University Professor of Chemistry and Material Science and Engineering at Penn.

The research, funded by the U.S. Army Research Office and a National Science Foundation Materials Research Science and Engineering Centers Award, is published in this week's Nature.

Existing strategies for growing BNSLs involve a more complex process of evaporating a two-nanocrystal solution on a solid substrate under carefully regulated temperature and pressure that influence BNSL formation. The method suffers from several limitations, most notably a limited choice of substrate, nucleation of irregular micrometer-sized, isolated islands of BNSLs on the substrates and an inability to transfer them once formed.

"Given the fact that this novel assembly strategy is general for different nanocrystal combinations, we anticipate that membranes of quasicrystalline BNSLs and ternary nanocrystal superlattices will also be grown by this method, greatly expanding the systems that can be explored" Murray said. "Our dream is to program the organization of materials on all lengths scales for nanometers to millimeters combining the desirable physical properties multiple nanoscale systems. Fundamentally we are focused on identifying, understanding and optimizing new synergistic interactions in nanomaterials and in exploiting these emergent properties in new devices and systems."


'/>"/>

Contact: Jordan Reese
jreese@upenn.edu
215-573-6604
University of Pennsylvania
Source:Eurekalert  

Related biology technology :

1. X-Chem and Roche Enter Into Drug Discovery Collaboration and License Agreement
2. Aeterna Zentaris Announces Collaboration with Almac to Develop Therapy and Companion Diagnostic in Cancer
3. Mount Sinai Medical Center Drives Genomic Research Collaboration with Isilon Scale-out NAS
4. Heptares Therapeutics Extends Multi-FTE Chemistry Collaboration With Oxygen Healthcare (O2h)
5. Penn-led collaboration mimics library of bio-membranes for use in nanomedicine, drug delivery
6. Educating the Marketplace Through Collaborations with Patient Advocacy Groups
7. Elekta / Mitsubishi Electric Collaboration Helps Japans Gunma University Heavy Ion Medical Center Launch Advanced Carbon Ion Therapy for Treating Cancer
8. Cheaper drugs, vaccines forecast as collaborations grow between developing countries biotech firms
9. iCyt Unveils New Flow Cytometry Products in Collaboration with Sony at CYTO2010
10. Boehringer Ingelheim and Micromet Announce Global Collaboration for Multiple Myeloma BiTE Antibody
11. S*BIO and Onyx Pharmaceuticals Announce Expanded Development Collaboration for JAK2 Inhibitors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Penn collaboration leads to simpler method for building varieties of nanocrystal superlattices
(Date:12/5/2016)... 2016 According to the ... Products (Consumable, Instruments, Automated Cell Expansion System), Cells ... Cell Research, Cancer, and Cell-Based Research), End-users (Biopharmaceutical ... Global Revenue, Trends, Growth, Share, Size and Forecast ... global cell expansion market is expected to reach ...
(Date:12/5/2016)... WOODCLIFF LAKE, N.J. , Dec. 5, 2016 ... its Phase 3 open-label two-year study of rufinamide, ... of the American Epilepsy Society (AES) held from ... . Analysis of final two-year safety, tolerability and ... therapy with rufinamide experienced similar safety and tolerability ...
(Date:12/4/2016)... (PRWEB) , ... December 03, 2016 , ... ... ground-breaking microbiome studies. A microbiome impact grant award has been made to Dr. ... of heavy smoking and drinking on the oral microbiome. Grant proposals have been ...
(Date:12/2/2016)... 2016 More than $4.3 million was raised last ... DHMD ). The gala was held at the American Museum ... and honored Alan Alda and ... and medicine and the public understanding of science. Since the ... event has raised $40 million for the Laboratory,s research and ...
Breaking Biology Technology:
(Date:11/15/2016)... , Nov. 15, 2016  Synthetic Biologics, Inc. ... therapeutics focused on the gut microbiome, today announced ... 25,000,000 shares of its common stock and warrants ... at a price to the public of $1.00 ... Synthetic Biologics from the offering, excluding the proceeds, ...
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/16/2016)... FRANCISCO , June 16, 2016 ... size is expected to reach USD 1.83 ... by Grand View Research, Inc. Technological proliferation and ... banking applications are expected to drive the market ... ) , The development of advanced ...
Breaking Biology News(10 mins):