Navigation Links
Origami could lead to exotic materials, tiny transformers
Date:8/7/2014

ITHACA, N.Y. Embracing the pleats, creases and tucks of the Japanese art of decorative paper folding, Cornell University researchers are uncovering how origami principles could lead to exotic materials, soft robots and even tiny transformers.

Publishing online in the journal Science Aug. 8, an interdisciplinary team led by Cornell's Itai Cohen, associate professor of physics, and graduate student Jesse Silverberg have discovered how to use a well-known origami folding pattern called the Miura-ori to control fundamental physical properties of any thin sheet of material.

Video, photos, study: https://cornell.box.com/origami

The Miura-ori, which consists of repeatedly folded parallelograms, can change the stiffness of a sheet of paper and, by extension, any material from which it's folded based only on the crease pattern. Moreover, by altering the pattern and introducing defects, they showed how to tune its stiffness, creating a material in which physical properties can be programmed.

Silverberg, an origami enthusiast since second grade, got the idea for studying the Miura-ori during a physics meeting, when co-author Chris Santangelo of the University of Massachusetts, Amherst, noticed its unusual properties. Most known materials bulge when squeezed, like a sponge. But the Miura-ori contracts when squeezed. "This is desirable for engineering all sorts of devices you wouldn't be able to make otherwise," Silverberg said.

The team, which also includes Arthur Evans and Ryan Hayward of UMass Amherst; and Thomas Hull of Western New England University, used desktop models many hand-folded by Silverberg and computational analysis by Evans to identify principles that could be applied to the design of metamaterials.

Metamaterials are generated by a repeating pattern of smaller subunits to engineer exotic, non-natural properties on larger scales. The Miura-ori itself can be considered a mechanical metamaterial because its stiffness can be controlled by the specific fold angles of the parallelograms, Silverberg said.

But unlike other metamaterials with fixed properties, "pop-through defects," which are made by changing crease directions, can be introduced at arbitrary locations within the sheet to change its stiffness.

Using numerical simulations, Evans and Santangelo calculated the effect that such a pop-through defect has on the Miura-ori. They showed that it instantly makes the entire sheet stiffer, and that their effect is additive. A pattern of pop-through defects behaves like a computer program: While a string of 0's and 1's tells a computer what to do, a configuration of pop-through defects controls the "hardware" and tells the Miura-ori how to respond to external forces. They also found that a neighboring pop-through defect with opposite orientation can cancel out the first defect. This effect is similar to what in atomic systems would be called a "vacancy" where an atom is removed from a crystal lattice.

"We're looking at an origami structure and using a language developed for understanding the mechanical properties of atomic crystals to talk about what we see here," Silverberg said. "Our work brings together origami, metamaterials, programmable matter, crystallography and more. It's totally bizarre and unique to have so many of these ideas intersecting at the same time."

The dream? Atomic-scale machines programmed based on folding patterns that could snap into place and perform mechanical functions.

"You can imagine a folded sheet of some material and popping in defects to make a stiff shield, or somehow deploying an object and giving it a rigid backbone," Cohen said. "You can think of it as appendages that can be locked in place or a useful tool whose properties can be set once it has been deployed. In that way, it's kind of like the transformers, where robots fold themselves up but unfurl, locked, into human form."

Cohen added: "It is amazing that there are so many hidden scientific research problems buried in just a simple sheet of paper."


'/>"/>

Contact: Syl Kacapyr
vpk6@cornell.edu
607-255-7701
Cornell University
Source:Eurekalert

Related biology technology :

1. Origami meets chemistry in scholarly video-article
2. Learning from origami to design new materials
3. Microfabrication breakthrough could set piezoelectric material applications in motion
4. Pitt discoveries in quantum physics could change face of technology
5. Nanoparticle electrode for batteries could make grid-scale power storage feasible
6. New magnetic-field-sensitive alloy could find use in novel micromechanical devices
7. Low-cost paper-based wireless sensor could help detect explosive devices
8. New method for enhancing thermal conductivity could cool computer chips, lasers and other devices
9. Discovery of a dark state could mean a brighter future for solar energy
10. Research could improve laser-manufacturing technique
11. Manipulating way bacteria talk could have practical applications, Texas A&M profs say
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... , Dec. 8, 2016  Biotheranostics today ... the role of the Breast Cancer Index (BCI) ... breast cancer are most at-risk for disease recurrence ... include results from three studies advancing the understanding ... related to tumor biology and inform decisions related ...
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, a leading ... interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's first FPGA-on-Module ... small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket for low-cost ...
(Date:12/8/2016)... , ... December 08, 2016 , ... ... bioInformatics portal. In response to client demand KbioBox developed a sophisticated “3 click” ... program. Both are accessible from KBioBox’s new website, https://www.kbiobox.com/ and ...
(Date:12/8/2016)... Dec. 8, 2016  Soligenix, Inc. (OTCQB: SNGX) ... focused on developing and commercializing products to treat ... need, announced today the long-term follow-up data from ... a first-in-class Innate Defense Regulator (IDR), in the ... neck cancer patients undergoing chemoradiation therapy (CRT).  The ...
Breaking Biology Technology:
(Date:12/7/2016)... to a new market research report "Emotion Detection and Recognition Market by Technology ... End User, And Region - Global Forecast to 2021", published by MarketsandMarkets, the ... USD 36.07 Billion by 2021, at a Compound Annual Growth Rate (CAGR) of ... ... MarketsandMarkets Logo ...
(Date:12/7/2016)... 2016   Avanade is helping Williams Martini ... in history, exploit biometric data in order to critically ... the competitive edge against their rivals after their impressive, ... Avanade has worked with Williams during the 2016 season ... (heart rate, breathing rate, temperature and peak acceleration) for ...
(Date:12/6/2016)... Dec. 6, 2016  Zimmer Biomet Holdings, Inc. (NYSE and ... an offering of €500.0 million principal amount of its 1.414% ... of its 2.425% senior unsecured notes due 2026. ... on December 13, 2016, subject to the satisfaction of customary closing ... The Company intends to use ...
Breaking Biology News(10 mins):