Navigation Links
Oregon researchers shed new light on solar water-splitting process
Date:12/2/2013

EUGENE, Ore. -- With the help of a new method called "dual-electrode photoelectrochemistry," University of Oregon scientists have provided new insight into how solar water-splitting cells work. An important and overlooked parameter, they report, is the ion-permeability of electrocatalysts used in water-splitting devices.

Their discovery could help replace a trial-and-error approach to paring electrocatalysts with semiconductors with an efficient method for using sunlight to separate hydrogen and oxygen from water to generate renewable energy, says Shannon W. Boettcher, professor of chemistry and head of the Solar Materials and Electrochemistry Laboratory in the UO's Materials Science Institute.

The research is described in a paper placed online Dec. 1 in advance of regular publication in the journal Nature Materials.

Solar water-splitting cells, which mimic photosynthesis, require at least two different types of materials: a semiconductor that absorbs sunlight and generates excited electrons and an electrocatalyst, typically a very thin film of a metal oxide that contains elements such as nickel, iron and oxygen, which serves to accelerate the rate at which electrons move on and off water molecules that are getting split into hydrogen and oxygen.

"We developed a new way to study the flow of electrons at the interface between semiconductors and electrocatalysts," Boettcher said. "We fabricated devices which have separate metal contacts to the semiconductor and electrocatalyst."

To do so, lead author Fuding Lin, a postdoctoral researcher, electrically contacted a single-crystal of semiconducting titanium dioxide and coated it with various electrocatalyst films. A film of gold only 10 nanometers thick was used to electrically contact the top of the electrocatalysts. Both contacts were used as probes to independently monitor and control the voltage and current at semiconductor-electrocatalyst junctions with a device known as a bipotentiostat. Lin focused on oxygen-evolution reaction -- the most difficult and inefficient step in the water-splitting process.

"This experiment allowed us to watch charge accumulate in the catalyst and change the catalyst's voltage," Boettcher said. It turns out, Lin said, that a thin layer of ion-porous electrocatalyst material works best, because the properties of the interface with the semiconductor adapt during operation as the charges excited by sunlight flow from the semiconductor onto the catalyst.

The research was designed to understand how maximum energy might be extracted from excited electrons in a semiconductor when the electrons enter the catalyst, where a chemical reaction separates oxygen and hydrogen. To date, Lin said, researchers have been experimenting with materials for creating efficient and cost-effective devices, but minimizing the energy loss associated with the catalyst-semiconductor interface has been a major hurdle.

In the study, Lin compared the movement of electrons between semiconductors coated with porous nickel oxyhydroxide -- a film previously shown by Boettcher's lab to yield excellent electrocatalytic efficiency for separating oxygen from water -- with semiconductors modified with non-permeable films of iridium oxide.

"The ion porous material allows water and ions to permeate the catalyst material," Lin said. "When these catalysts are in solution the catalyst's energy can move up and down as its oxidation state changes."

Catalysts with non-porous structures in semiconductor-catalytic junctions don't show this behavior and typically don't work as well, said Boettcher, who also is a member of Oregon BEST (Oregon Built Environment & Sustainable Technologies Center), a state signature initiative.

Converting sunlight into energy and storing it for later use in an economically viable way is a major challenge in the quest to replace fossil fuels with renewable energy. Traditional solar photovoltaic cells absorb sunlight to form excited electrons that are funneled into wires as electricity but storing energy as electricity, for example in batteries, is expensive.

Details about how excited electrons move from semiconductors to catalysts have been poorly understood, Boettcher said. "This lack of understanding makes improving water-splitting devices difficult, as researchers have been relying on trial-and-error instead of rational design."

The system used in the study, Boettcher added, was not efficient. "That wasn't our goal," he said. "We wanted to understand what's happening at a basic level with well-defined materials. This will facilitate the design of systems that are more efficient using other materials."

"Researchers at the University of Oregon are reengineering the science, manufacturing and business processes related to critical products," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "This important discovery by Dr. Boettcher and his team could lead to more efficient systems that help foster a sustainable future."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology technology :

1. Portland Medical Marijuana Clinic - The Aurora Clinic - Now Offering Complimentary Telephone Consultations for Washington and Oregon Medical Marijuana Cards
2. Infrared vision lets researchers see through -- and into -- multiple layers of graphene
3. Researchers develop technique to convert thermoelectric material into high performance electricity
4. UT Austin researchers grow large graphene crystals that have exceptional electrical properties
5. Researchers at Penn add another tool in their directed assembly toolkit
6. York researchers discover important mechanism behind nanoparticle reactivity
7. Researchers discover how retinal neurons claim the best brain connections
8. Researchers measure flow from a nanoscale fluid jet
9. Researchers advance scheme to design seamless integrated circuits etched on graphene
10. Harvard researchers, pharma experts offer recommendations to expand access to clinical trial data
11. Virginia Tech researchers publish study on jellyfish energy consumption that will improve bio-inspired robotic designs for Navy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Oregon researchers shed new light on solar water-splitting process
(Date:1/21/2017)... ... ... Nipro Corporation (Osaka, Japan) and Transonic Systems Inc. (New York, USA) announced ... and sales rights for all non-OEM Transonic products in Japan. As partners for more ... Nipro - Transonic JV is a natural next step to advance best practices and ...
(Date:1/21/2017)... BOULDER, Colo. , Jan. 20, 2017 ... ("Bioptix" or the "Company"), announced that on January 14, ... a plan under which the Company will terminate certain ... subsidiary, Bioptix Diagnostics, Inc.  The Company commenced terminations on ... completed within 30 days.  The Company may pay severance ...
(Date:1/20/2017)... ... January 20, 2017 , ... The two newest companies to join the University ... a spin out from The Wistar Institute, and Sanguis, launched by a trio of ... Street. , Vironika is developing a treatment for a chronic viral infection and ...
(Date:1/20/2017)... January 20, 2017 http://www.Financialbuzz.com ... one of leading causes of death worldwide. There were ... number of cancer related deaths increased gradually over time, ... incidence rate of various cancers continues to drive demand ... report by Global Market Insights, Inc. cancer biological therapy ...
Breaking Biology Technology:
(Date:1/6/2017)... 2017  SomaLogic announced today that it has ... by iCarbonX, the China -based ... Digital Health Ecosystem that can define each person,s ... biological, behavioral and psychological data, the Internet and ... SomaLogic will provide proteomics data and applications expertise ...
(Date:1/3/2017)... Jan. 3, 2017 Onitor, provider of digital ... Onitor Track, an innovative biometric data-driven program designed to ... month at the 2017 Consumer Electronics Show (CES) in ... In the U.S., the World Health Organization (WHO), have ... of adults who are overweight or obese. WHO also ...
(Date:12/20/2016)... RALEIGH, N.C. and GENEVA, Dec, 20, 2016 ... performance biometric data sensor technology, and STMicroelectronics ... across the spectrum of electronics applications, announced today ... scalable development kit for biometric wearables that includes ... integrated with Valencell,s Benchmark™ biometric sensor ...
Breaking Biology News(10 mins):