Navigation Links
Oregon researchers shed new light on solar water-splitting process
Date:12/2/2013

EUGENE, Ore. -- With the help of a new method called "dual-electrode photoelectrochemistry," University of Oregon scientists have provided new insight into how solar water-splitting cells work. An important and overlooked parameter, they report, is the ion-permeability of electrocatalysts used in water-splitting devices.

Their discovery could help replace a trial-and-error approach to paring electrocatalysts with semiconductors with an efficient method for using sunlight to separate hydrogen and oxygen from water to generate renewable energy, says Shannon W. Boettcher, professor of chemistry and head of the Solar Materials and Electrochemistry Laboratory in the UO's Materials Science Institute.

The research is described in a paper placed online Dec. 1 in advance of regular publication in the journal Nature Materials.

Solar water-splitting cells, which mimic photosynthesis, require at least two different types of materials: a semiconductor that absorbs sunlight and generates excited electrons and an electrocatalyst, typically a very thin film of a metal oxide that contains elements such as nickel, iron and oxygen, which serves to accelerate the rate at which electrons move on and off water molecules that are getting split into hydrogen and oxygen.

"We developed a new way to study the flow of electrons at the interface between semiconductors and electrocatalysts," Boettcher said. "We fabricated devices which have separate metal contacts to the semiconductor and electrocatalyst."

To do so, lead author Fuding Lin, a postdoctoral researcher, electrically contacted a single-crystal of semiconducting titanium dioxide and coated it with various electrocatalyst films. A film of gold only 10 nanometers thick was used to electrically contact the top of the electrocatalysts. Both contacts were used as probes to independently monitor and control the voltage and current at semiconductor-electrocatalyst junctions with a device known as a bipotentiostat. Lin focused on oxygen-evolution reaction -- the most difficult and inefficient step in the water-splitting process.

"This experiment allowed us to watch charge accumulate in the catalyst and change the catalyst's voltage," Boettcher said. It turns out, Lin said, that a thin layer of ion-porous electrocatalyst material works best, because the properties of the interface with the semiconductor adapt during operation as the charges excited by sunlight flow from the semiconductor onto the catalyst.

The research was designed to understand how maximum energy might be extracted from excited electrons in a semiconductor when the electrons enter the catalyst, where a chemical reaction separates oxygen and hydrogen. To date, Lin said, researchers have been experimenting with materials for creating efficient and cost-effective devices, but minimizing the energy loss associated with the catalyst-semiconductor interface has been a major hurdle.

In the study, Lin compared the movement of electrons between semiconductors coated with porous nickel oxyhydroxide -- a film previously shown by Boettcher's lab to yield excellent electrocatalytic efficiency for separating oxygen from water -- with semiconductors modified with non-permeable films of iridium oxide.

"The ion porous material allows water and ions to permeate the catalyst material," Lin said. "When these catalysts are in solution the catalyst's energy can move up and down as its oxidation state changes."

Catalysts with non-porous structures in semiconductor-catalytic junctions don't show this behavior and typically don't work as well, said Boettcher, who also is a member of Oregon BEST (Oregon Built Environment & Sustainable Technologies Center), a state signature initiative.

Converting sunlight into energy and storing it for later use in an economically viable way is a major challenge in the quest to replace fossil fuels with renewable energy. Traditional solar photovoltaic cells absorb sunlight to form excited electrons that are funneled into wires as electricity but storing energy as electricity, for example in batteries, is expensive.

Details about how excited electrons move from semiconductors to catalysts have been poorly understood, Boettcher said. "This lack of understanding makes improving water-splitting devices difficult, as researchers have been relying on trial-and-error instead of rational design."

The system used in the study, Boettcher added, was not efficient. "That wasn't our goal," he said. "We wanted to understand what's happening at a basic level with well-defined materials. This will facilitate the design of systems that are more efficient using other materials."

"Researchers at the University of Oregon are reengineering the science, manufacturing and business processes related to critical products," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "This important discovery by Dr. Boettcher and his team could lead to more efficient systems that help foster a sustainable future."


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology technology :

1. Portland Medical Marijuana Clinic - The Aurora Clinic - Now Offering Complimentary Telephone Consultations for Washington and Oregon Medical Marijuana Cards
2. Infrared vision lets researchers see through -- and into -- multiple layers of graphene
3. Researchers develop technique to convert thermoelectric material into high performance electricity
4. UT Austin researchers grow large graphene crystals that have exceptional electrical properties
5. Researchers at Penn add another tool in their directed assembly toolkit
6. York researchers discover important mechanism behind nanoparticle reactivity
7. Researchers discover how retinal neurons claim the best brain connections
8. Researchers measure flow from a nanoscale fluid jet
9. Researchers advance scheme to design seamless integrated circuits etched on graphene
10. Harvard researchers, pharma experts offer recommendations to expand access to clinical trial data
11. Virginia Tech researchers publish study on jellyfish energy consumption that will improve bio-inspired robotic designs for Navy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Oregon researchers shed new light on solar water-splitting process
(Date:2/10/2016)... , Febr. 10, 2016 /PRNewswire/ - BioAmber Inc. (NYSE: ... pleased to announce that Mitsui & Co. Ltd., its ... succinic acid plant, is investing an additional CDN$25 million ... increasing its stake from 30% to 40%.  Mitsui will ... bio-succinic acid produced in Sarnia , ...
(Date:2/10/2016)... , Feb. 10, 2016 NX Prenatal ... its proprietary NeXosome® technology for early warning of ... its most recent study by Dr. Thomas ... the Society for Maternal Fetal Medicine,s (SMFM) annual meeting ... 1-6 th , 2016.  The presentation reported initial ...
(Date:2/10/2016)... (NYSE MKT: ISR), a medical technology company and innovator ... treatment of prostate, brain, lung, head and neck and ... second quarter and six months of fiscal 2016, which ... --> Revenue was $1.19 million for ... 31, 2015, a 12% increase compared to $1.07 million ...
(Date:2/10/2016)... ... February 10, 2016 , ... ... announced today the promotion of two long-standing principal investigators (PI) to the roles ... Clinical Research and Development. , Dr. Laurence Chu, a Benchmark Research PI in ...
Breaking Biology Technology:
(Date:2/9/2016)... Feb. 9, 2016 Aware, Inc. (NASDAQ: AWRE ), ... results for its fourth quarter and year ended December 31, 2015.  ... the fourth quarter of 2015 was $6.9 million, an increase of ... Operating income in the fourth quarter of 2015 was $2.6 million ... --> --> Higher revenue and ...
(Date:2/8/2016)... 2016 Worldcore is ... innovation for clients, comfort and unbeatable security, with ... --> Worldcore is the first EU-regulated ... comfort and unbeatable security, with a Voice Biometrics ... Worldcore is the first EU-regulated global payment ...
(Date:2/4/2016)... 4, 2016 The field of Human ... the most popular hubs of the biotechnology industry. ... huge studies of human microbiota, have garnered a ... the microbiome space has literally exploded in terms ... This report focuses on biomedical aspects of research, ...
Breaking Biology News(10 mins):