Navigation Links
Opto-electronic nose sniffs out toxic gases
Date:12/19/2009

CHAMPAIGN, Ill. Imagine a polka-dotted postage stamp that can sniff out poisonous gases or deadly toxins simply by changing colors.

As reported in the Sept. 13 issue of the journal Nature Chemistry, Kenneth Suslick and his team at the University of Illinois have developed an artificial nose for the general detection of toxic industrial chemicals (TICs) that is simple, fast and inexpensive and works by visualizing odors. This sensor array could be useful in detecting high exposures to chemicals that pose serious health risks in the workplace or through accidental exposure.

"Our device is simply a digital multidimensional extension of litmus paper. We have a six by six array of different nanoporous pigments whose colors change depending on their chemical environment," said Suslick, the Schmidt Professor of Chemistry at the U. of I. "The pattern of the color change is a unique molecular fingerprint for any toxic gas and also tells us its concentration. By comparing that pattern to a library of color fingerprints, we can identify and quantify the TICs in a matter of seconds."

To create the sensor array, the researchers print a series of tiny colored dots each a different pigment on an inert backing such as paper, plastic or glass. The array is then digitally imaged with an ordinary flatbed scanner or an inexpensive electronic camera before and after exposure to an odor-producing substance. And, unlike other electronic-nose technologies that have been tried in the past, these colorimetric sensors are not affected by changes in relative humidity.

While physicists have radiation badges to protect them in the workplace, chemists and workers who handle chemicals have no good equivalent to monitor their exposure to potentially toxic chemicals.

This project, which was funded by the National Institute of Environmental Health Sciences at the National Institutes of Health, exemplifies the types of sensors that are being developed as part of the NIH Genes, Environment and Health Initiative.

"This research is an essential component of the GEI Exposure Biology Program that NIEHS has the lead on, which is to develop technologies to monitor and better understand how environmental exposures affect disease risk," said NIEHS director Linda Birnbaum. "This paper brings us one step closer to having a small wearable sensor that can detect multiple airborne toxins."

To test the application of their color sensor array, the researchers chose 19 representative examples of toxic industrial chemicals. Chemicals such as ammonia, chlorine, nitric acid and sulfur dioxide at concentrations known to be immediately dangerous to life or health were included.

The laboratory studies used inexpensive flatbed scanners for imaging. The researchers have developed a fully functional prototype handheld device that uses inexpensive white LED illumination and an ordinary camera, which will make the whole process of scanning more sensitive, smaller, faster, and even less expensive. It will be similar to a card-scanning device. The device is now being commercialized by iSense, located in Palo Alto, Calif., and Champaign.

The researchers say older methods relied on sensors whose response originates from weak and highly non-specific chemical interactions, whereas this new technology is based on stronger dye-analyte interactions that are responsive to a diverse set of chemicals. The power of this sensor to identify so many volatile toxins stems from the increased range of interactions that are used to discriminate the response of the array.

"One of the nice things about this technology is that it uses components that are readily available and relatively inexpensive," said David Balshaw, Ph.D. program administrator at NIEHS. "Given the broad range of chemicals that can be detected and the high sensitivity of the array to those compounds, it appears that this device will be particularly useful in occupational settings."


'/>"/>

Contact: Ken Suslick
ksuslick@illinois.edu
217-333-2794
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology technology :

1. Opto-electronic nose sniffs out toxic gases
2. Pharmatek Adds Cytotoxic and High-Potent Drug Development Capabilities to San Diego Laboratory
3. BioReliance Launches Next-Generation Genotoxicity Screening Service
4. Interleukin Genetics President and Chief Scientific Officer to Present at Immunotoxicology V Conference
5. ARIUS announces cancer stem cell antibody program successfully completes first toxicology study
6. AEterna Zentaris to Further Develop Three Follow-up Multi-targeted Cytotoxic Candidates to AEZS-112 as Potential Novel Cancer Treatment
7. Biochip mimics the body to reveal toxicity of industrial compounds
8. UC Berkeley Expands Molecular Toxicology Curriculum to Include GeneGos Platform
9. GelVac(TM) Nasal Powder H5N1 (Bird Flu) Influenza Vaccine Passes Preclinical Toxicology Studies
10. Study Shows Coronado Biosciences Bcl-2 Inhibitor, Apogossypol, is More Efficacious, Less Toxic than Gossypol in Animal Models
11. GeneGo Collaborates With The Netherlands Toxicogenomics Center on $100 Million Grant
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Opto-electronic nose sniffs out toxic gases
(Date:2/11/2016)... BioPharma Selling Solutions (Spectra) is a new Contract ... experience, expertise, operational delivery and customer focus to ... in concert with industry leading commercial experts, the ... needs of its clients by providing value-based creative ... non-personal promotion. --> ...
(Date:2/11/2016)... 2016 --> ... (OTCQB: PSID), a life sciences company focused on ... subsidiary, which markets the Caregiver® FDA-cleared non-contact thermometer, ... January 2016, including entering into agreements with five ... growth, and establishing several near-term pipeline opportunities. ...
(Date:2/11/2016)... , ... February 11, 2016 , ... ... its new stem cell treatment clinic in Quito, Ecuador. The new facility will ... trauma applications to patients from around the world. , The new GSCG ...
(Date:2/10/2016)... , Feb. 10, 2016 NX Prenatal ... its proprietary NeXosome® technology for early warning of ... its most recent study by Dr. Thomas ... the Society for Maternal Fetal Medicine,s (SMFM) annual meeting ... 1-6 th , 2016.  The presentation reported initial ...
Breaking Biology Technology:
(Date:2/3/2016)... , Feb. 3, 2016 Vigilant Solutions announces ... Department in Missouri solved two ... reader (LPR) data from Vigilant Solutions. Brian ... in which the victim was walking out of a convenience store and witnessed ... next to his vehicle, striking his vehicle and leaving ...
(Date:2/2/2016)... Feb. 2, 2016 This BCC Research ... market by reviewing the recent advances in high ... drive the field forward. Includes forecast through 2019. ... the challenges and opportunities that exist in the ... solution developers, as well as IT and bioinformatics ...
(Date:2/2/2016)... , Feb. 2, 2016   Parabon NanoLabs ... the U.S. Army Research Office and the Defense ... and sensitivity of the company,s Snapshot Kinship ... Mission and, more generally, defense-related DNA forensics.  Although ... capabilities (predicting appearance and ancestry from DNA evidence), ...
Breaking Biology News(10 mins):