Navigation Links
On the trail of rogue genetically modified pathogens

Bacteria can be used to engineer genetic modifications, thereby providing scientists with a tool to combat many challenges in areas from food production to drug discovery. However, this sophisticated technology can also be used maliciously, raising the threat of engineered pathogens. New research published in the online open access journal Genome Biology shows that computational tools could become a vital resource for detecting rogue genetically engineered bacteria in environmental samples.

Jonathan Allen, Shea Gardner and Tom Slezak of the Lawrence Livermore National Laboratory in California, US, designed new computational tools that identify a set of DNA markers that can distinguish between artificial vector sequences and natural DNA sequences. Natural plasmids and artificial vector sequences have much in common, but these new tools show the potential to achieve high sensitivity and specificity, even when detecting previously unsequenced vectors in microarray-based bioassays.

A new computational genomics tool was developed to compare all available sequenced artificial vectors with available natural sequences, including plasmids and chromosomes, from bacteria and viruses. The tool clusters the artificial vector sequences into different subgroups based on shared sequence; these shared sequences were then compared with the natural plasmid and chromosomal sequence information so as to find regions that are unique to the artificial vectors. Nearly all the artificial vector sequences had one or more unique regions. Short stretches of these unique regions are termed candidate DNA signatures and can be used as probes for detecting an artificial vector sequence in the presence of natural sequences using a microarray. Further tests showed that subgroups of candidate DNA signatures are far more likely to match unseen artificial than natural sequences.

The authors say that the next step is to see whether a bioassay design using DNA signatures on microarrays can spot genetically modified DNA in a sample containing a mixture of natural and modified bacteria. The scientific community will need to cooperate with computational experts to sequence and track available vector sequences if DNA signatures are to be used successfully to support detection and deterrence against malicious genetic engineering applications. Scientists would be able to maintain an expanding database of DNA signatures to track all sequenced vectors.

As with any attempt to counter malicious use of technology, detecting genetic engineering in microbes will be an immense challenge that requires many different tools and continual effort, says Allen.


Contact: Charlotte Webber
BioMed Central

Post Your Comments:
(Date:12/1/2015)... 1, 2015 Vancouver ... lancet that features Owen Mumford,s unique Comfort Zone Technology®. ... Unistik® Touch is a touch activated lancet that features ... Owen Mumford, a leading medical device manufacturer, today unveils ... available initially in the US before expanding out to ...
(Date:12/1/2015)... , Dec. 1, 2015 Today the Allen ... Seattle,s South Lake Union neighborhood, ... of Mercer Street and Westlake Avenue North, the 270,000 ... Allen Institute for Brain Science and the Allen Institute ... philanthropist and founder of the Allen Institute. "We started ...
(Date:12/1/2015)... CAMBRIDGE, Mass. , Dec. 1, 2015 ... and the McGovern Institute for Brain Research at MIT ... system that significantly cut down on "off-target" editing errors. ... issues in the use of genome editing. ... report that changing three of the approximately 1,400 amino ...
(Date:12/1/2015)... Dec. 1, 2015  Twist Bioscience, a company focused on ... , Ph.D., has been selected as one of Foreign ... fast-tracking the building blocks of life . Each year, ... whose contributions and work have changed lives and are shaping ... "It is an honor to be recognized among these incredible ...
Breaking Biology Technology:
(Date:12/1/2015)... , Dec. 1, 2015 Synaptics Incorporated (NASDAQ: ... solutions, today announced a new agreement with Nok ... real-world test and development environments that combine FIDO Certified ... partnership reduces the complexity of FIDO certification for Synaptics, ... Synaptics and OEMs to verify FIDO enabled devices in ...
(Date:11/30/2015)... Nov. 30, 2015  BIOCLAIM announced today that ... year,s Fierce Innovation Awards:  Healthcare Edition, an awards ... , FierceHealthcare , and ... finalist in the category of "Privacy and Cybersecurity." ... --> Photo - ...
(Date:11/26/2015)... , Nov. 26, 2015 Research and ... the "Capacitive Fingerprint Sensors - Technology and Patent ... --> --> Fingerprint ... especially in smartphones. The fingerprint sensor vendor Idex forecasts ... sensor units in mobile devices and of the fingerprint ...
Breaking Biology News(10 mins):