Navigation Links
On the road to plasmonics with silver polyhedral nanocrystals
Date:11/22/2011

The question of how many polyhedral nanocrystals of silver can be packed into millimeter-sized supercrystals may not be burning on many lips but the answer holds importance for one of today's hottest new high-tech fields plasmonics! Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) may have opened the door to a simpler approach for the fabrication of plasmonic materials by inducing polyhedral-shaped silver nanocrystals to self-assemble into three-dimensional supercrystals of the highest possible density.

Plasmonics is the phenomenon by which a beam of light is confined in ultra-cramped spaces allowing it to be manipulated into doing things a beam of light in open space cannot. This phenomenon holds great promise for superfast computers, microscopes that can see nanoscale objects with visible light, and even the creation of invisibility carpets. A major challenge for developing plasmonic technology, however, is the difficulty of fabricating metamaterials with nano-sized interfaces between noble metals and dielectrics.

Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, led a study in which silver nanocrystals of a variety of polyhedral shapes self-assembled into exotic millimeter-sized superstructures through a simple sedimentation technique based on gravity. This first ever demonstration of forming such large-scale silver supercrystals through sedimentation is described in a paper in the journal Nature Materials titled "Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices." Yang, who also holds appointments with the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering, is the corresponding author.

"We have shown through experiment and computer simulation that a range of highly uniform, nanoscale silver polyhedral crystals can self-assemble into structures that have been calculated to be the densest packings of these shapes," Yang says. "In addition, in the case of octahedra, we showed that controlling polymer concentration allows us to tune between a well-known lattice packing structure and a novel packing structure that featured complex helical motifs."

In the Nature Materials paper Yang and his co-authors describe a polyol synthesis technique that was used to generate silver nanocrystals in various shapes, including cubes, truncated cubes, cuboctahedra, truncated octahedra and octahedra over a range of sizes from 100 to 300 nanometers. These uniform polyhedral nanocrystals were then placed in solution where they assembled themselves into dense supercrystals some 25 square millimeters in size through gravitational sedimentation. While the assembly process could be carried out in bulk solution, having the assembly take place in the reservoirs of microarray channels provided Yang and his collaborators with precise control of the superlattice dimensions.

"In a typical experiment, a dilute solution of nanoparticles was loaded into a reservoir that was then tilted, causing the particles to gradually sediment and assemble at the bottom of the reservoir," Yang says. "More concentrated solutions or higher angles of tilt caused the assemblies to form more quickly."

The assemblies generated by this sedimentation procedure exhibited both translational and rotational order over exceptional length scales. In the cases of cubes, truncated octahedra and octahedra, the structures of the dense supercrystals corresponded precisely to their densest lattice packings. Although sedimentation-driven assembly is not new, Yang says this is the first time the technique has been used to make large-scale assemblies of highly uniform polyhedral particles.

"The key factor in our experiments is particle shape, a feature we have found easier to control," Yang says. "When compared with crystal structures of spherical particles, our dense packings of polyhedra are characterized by higher packing fractions, larger interfaces between particles, and different geometries of voids and gaps, which will determine the electrical and optical properties of these materials."

The silver nanocrystals used by Yang and his colleagues are excellent plasmonic materials for surface-enhanced applications. Packing the nanocrystals into three-dimensional supercrystals allows them to be used as metamaterials with the unique optical properties that make plasmonic technology so intriguing.

"Our self-assembly process for these silver polyhedral nanocrystals may give us access to a wide range of interesting, scalable nanostructured materials with dimensions that are comparable to those of bulk materials," Yang says.


'/>"/>

Contact: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology technology :

1. Optical Materials Express focus issue: Nanoplasmonics and metamaterials
2. GRIN plasmonics
3. Diamonds, silver and the quest for single photons
4. Microban Medical Silver Antimicrobial Technologies for HCR Silicone Achieve 5 Log Reductions in Bacteria Growth and Prevent Biofilm Formation
5. Gold and silver nano baubles
6. Sigma® Life Science Awarded Silver in Top Ten Innovations 2010
7. Vital Therapies Expands SILVER Trial to Saudi Arabia
8. Haydon Kerk Motion Solutions Inspires Next Generation of Innovators as Silver Supplier of the FIRST Robotics Competition
9. The toxicity of antimicrobial silver in products can be reduced
10. Microban Signs Exclusive Agreement with Sharp Electronics to Launch Calculators with New Microban(R) 3G Silver(TM) Antimicrobial Technology
11. ULURU Inc. Announces the Filing of a 510k Submission With the FDA for Altrazeal(TM) Silver
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
On the road to plasmonics with silver polyhedral nanocrystals
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks Associates ... will speak at the TMA 2017 Annual Meeting , October 11 ... in the residential home security market and how smart safety and security ... Parks Associates: ... "The residential security ...
(Date:10/10/2017)... BARBARA, CALIFORNIA (PRWEB) , ... October 10, 2017 ... ... management, technological innovation and business process optimization firm for the life sciences and ... BoxWorks conference in San Francisco. , The presentation, “Automating GxP Validation ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings announced ... by which its ProCell stem cell therapy prevents ... ischemia.  The Company, demonstrated that treatment with ProCell ... limbs saved as compared to standard bone marrow ... HGF resulted in reduction of therapeutic effect.  ...
(Date:10/9/2017)... ... ... At its national board meeting in North Carolina, ARCS® Foundation President ... and Astronomy, has been selected for membership in ARCS Alumni Hall of Fame ... Prize in Fundamental physics for the discovery of the accelerating expansion of the universe, ...
Breaking Biology Technology:
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
(Date:4/17/2017)... 2017 NXT-ID, Inc. (NASDAQ: NXTD ) ... of its 2016 Annual Report on Form 10-K on Thursday April ... ... in the Investor Relations section of the Company,s website at ... at http://www.sec.gov . 2016 Year Highlights: ...
(Date:4/13/2017)... 13, 2017 According to a new market research ... Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and ... is expected to grow from USD 14.30 Billion in 2017 to USD ... 17.3%. ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):