Navigation Links
ORNL microscopy generates new view of fuel cells

OAK RIDGE, Tenn., Aug. 15, 2011 A novel microscopy method at the Department of Energy's Oak Ridge National Laboratory is helping scientists probe the reactions that limit widespread deployment of fuel cell technologies.

ORNL researchers applied a technique called electrochemical strain microscopy that enables them to examine the dynamics of oxygen reduction/evolution reactions in fuel cell materials, which may reveal ways to redesign or cut the costs of the energy devices. The team's findings were published in Nature Chemistry.

"If we can find a way to understand the operation of the fuel cell on the basic elementary level and determine what will make it work in the most optimum fashion, it would create an entirely new window of opportunity for the development of better materials and devices," said co-author Amit Kumar, a research scientist at ORNL's Center for Nanophase Materials Sciences.

Although fuel cells have long been touted as a highly efficient way to convert chemical energy into electrical energy, their high cost -- in large part due to the use of platinum as a catalyst -- has constrained commercial production and consumption.

Large amounts of platinum are used to catalyze the fuel cell's key reaction -- -the oxygen-reduction reaction, which controls the efficiency and longevity of the cell. Yet exactly how and where the reaction takes place had not been probed because existing device-level electrochemical techniques are ill suited to study the reaction at the nanoscale. ORNL co-author Sergei Kalinin explains that certain methods like electron microscopy had failed to capture the dynamics of fuel cell operation because their resolution was effectively too high.

"When you want to understand how a fuel cell works, you are not interested in where single atoms are, you're interested in how they move in nanometer scale volumes," Kalinin said. "The mobile ions in these solids behave almost like a liquid. They don't stay in place. The faster these mobile ions move, the better the material is for a fuel cell application. Electrochemical strain microscopy is able to image this ion mobility."

Other electrochemical techniques are unable to study oxygen-reduction reactions because they are limited to resolutions of 10's of microns 10,000 times larger than a nanometer.

"If the reaction is controlled by microstructure features that are much finer than a micron, let's say grain boundaries or single extended defects that are affecting the reaction, then you will never be able to catch what is giving rise to reduced or enhanced functionality of the fuel cell," said ORNL's Stephen Jesse, builder of the ESM microscope. "You would like to do this probing on a scale where you can identify each of these defects and correlate the functionality of the cell with these defects."

Although this study mainly focuses on the introduction of a technique, researchers explain their approach as a much-needed bridge between a theoretical and applied understanding of fuel cells.

"There is a huge gap between fundamental science and applied science for energy-related devices like fuel cells and batteries," Kalinin said. "The semiconducting industry, for example, is developing exponentially because the link between application and basic science is very well established. This is not the case in energy systems. They are usually much more complicated than semiconductors and therefore a lot of development is driven by trial and error type of work."


Contact: Morgan McCorkle
DOE/Oak Ridge National Laboratory

Related biology technology :

1. Nikon Instruments Provides Donation to Help Clemson University Start New Core Microscopy Facility
2. Nikon Instruments Introduces Exclusive VAAS Detector Imaging Method for Confocal Microscopy
3. Carbon Design Innovations, Inc. Introduces Carbon Nanotube Probe Technology for Atomic Force Microscopy, CNT-Probes Deliver New Level of AFM Imaging Performance
4. QImaging Introduces EXi Aqua™ Microscopy Camera for Bio-Imaging
5. Potential leap forward in electron microscopy
6. Nikon Corporation Acquires License From Harvard University For STORM Super Resolution Microscopy -- Will Create Innovative New N-STORM Microscope
7. A little less force: Making atomic force microscopy work for cells
8. Carl Zeiss Offers Online Promotions – Discounts on Stereomicroscopy and Converting to 3D Imaging
9. Depth charge: Using atomic force microscopy to study subsurface structures
10. Livermores DTEM earns innovation award from Microscopy Today
11. Applied Precision Installs New DeltaVision
Post Your Comments:
Related Image:
ORNL microscopy generates new view of fuel cells
(Date:11/25/2015)... HOLLISTON, Mass. , Nov. 25, 2015 ... HART ), a biotechnology company developing bioengineered organ implants ... McGorry will present at the LD Micro "Main ... 2:30 p.m. PT. The presentation will be webcast live ... Management will also be available at the conference for ...
(Date:11/25/2015)... /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; TSX: AEZ) ... remain fundamentally strong and highlights the following developments: ... DSMB recommendation to continue the ZoptEC Phase 3 ... final interim efficacy and safety data , ... with heavily pretreated castration- and Taxane-resistant prostate cancer ...
(Date:11/25/2015)... SAN DIEGO , Nov. 25, 2015 ... that management will participate in a fireside chat discussion ... New York . The discussion is ... Time. .  A replay will ... Contact:  Media Contact:McDavid Stilwell  , Julie NormartVP, Corporate ...
(Date:11/25/2015)... ... November 25, 2015 , ... Jessica Richman and Zachary Apte, ... their initial angel funding process. Now, they are paying it forward to other ... stage investments in the microbiome space. In this, they join other successful ...
Breaking Biology Technology:
(Date:11/19/2015)... -- Although some 350 companies are actively involved in molecular ... according to Kalorama Information. These include Roche Diagnostics, Hologic, Abbott ... of the 6.1 billion-dollar molecular testing market, according to ... Diagnostic s .    ... one company and only a handful of companies can ...
(Date:11/18/2015)... November 18, 2015 --> ... a new market report titled  Gesture Recognition Market - ... 2015 - 2021. According to the report, the global gesture recognition ... anticipated to reach US$29.1 bn by 2021, at a ... North America dominated the global gesture ...
(Date:11/17/2015)... Paris , qui s,est tenu ... Paris , qui s,est tenu du 17 au ... l,innovation biométrique, a inventé le premier scanner couplé, qui ... même surface de balayage. Jusqu,ici, deux scanners étaient nécessaires, ... digitales. Désormais, un seul scanner est en mesure de ...
Breaking Biology News(10 mins):