Navigation Links
ORNL microscopy generates new view of fuel cells
Date:8/15/2011

OAK RIDGE, Tenn., Aug. 15, 2011 A novel microscopy method at the Department of Energy's Oak Ridge National Laboratory is helping scientists probe the reactions that limit widespread deployment of fuel cell technologies.

ORNL researchers applied a technique called electrochemical strain microscopy that enables them to examine the dynamics of oxygen reduction/evolution reactions in fuel cell materials, which may reveal ways to redesign or cut the costs of the energy devices. The team's findings were published in Nature Chemistry.

"If we can find a way to understand the operation of the fuel cell on the basic elementary level and determine what will make it work in the most optimum fashion, it would create an entirely new window of opportunity for the development of better materials and devices," said co-author Amit Kumar, a research scientist at ORNL's Center for Nanophase Materials Sciences.

Although fuel cells have long been touted as a highly efficient way to convert chemical energy into electrical energy, their high cost -- in large part due to the use of platinum as a catalyst -- has constrained commercial production and consumption.

Large amounts of platinum are used to catalyze the fuel cell's key reaction -- -the oxygen-reduction reaction, which controls the efficiency and longevity of the cell. Yet exactly how and where the reaction takes place had not been probed because existing device-level electrochemical techniques are ill suited to study the reaction at the nanoscale. ORNL co-author Sergei Kalinin explains that certain methods like electron microscopy had failed to capture the dynamics of fuel cell operation because their resolution was effectively too high.

"When you want to understand how a fuel cell works, you are not interested in where single atoms are, you're interested in how they move in nanometer scale volumes," Kalinin said. "The mobile ions in these solids behave almost like a liquid. They don't stay in place. The faster these mobile ions move, the better the material is for a fuel cell application. Electrochemical strain microscopy is able to image this ion mobility."

Other electrochemical techniques are unable to study oxygen-reduction reactions because they are limited to resolutions of 10's of microns 10,000 times larger than a nanometer.

"If the reaction is controlled by microstructure features that are much finer than a micron, let's say grain boundaries or single extended defects that are affecting the reaction, then you will never be able to catch what is giving rise to reduced or enhanced functionality of the fuel cell," said ORNL's Stephen Jesse, builder of the ESM microscope. "You would like to do this probing on a scale where you can identify each of these defects and correlate the functionality of the cell with these defects."

Although this study mainly focuses on the introduction of a technique, researchers explain their approach as a much-needed bridge between a theoretical and applied understanding of fuel cells.

"There is a huge gap between fundamental science and applied science for energy-related devices like fuel cells and batteries," Kalinin said. "The semiconducting industry, for example, is developing exponentially because the link between application and basic science is very well established. This is not the case in energy systems. They are usually much more complicated than semiconductors and therefore a lot of development is driven by trial and error type of work."


'/>"/>

Contact: Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308
DOE/Oak Ridge National Laboratory
Source:Eurekalert  

Related biology technology :

1. Nikon Instruments Provides Donation to Help Clemson University Start New Core Microscopy Facility
2. Nikon Instruments Introduces Exclusive VAAS Detector Imaging Method for Confocal Microscopy
3. Carbon Design Innovations, Inc. Introduces Carbon Nanotube Probe Technology for Atomic Force Microscopy, CNT-Probes Deliver New Level of AFM Imaging Performance
4. QImaging Introduces EXi Aqua™ Microscopy Camera for Bio-Imaging
5. Potential leap forward in electron microscopy
6. Nikon Corporation Acquires License From Harvard University For STORM Super Resolution Microscopy -- Will Create Innovative New N-STORM Microscope
7. A little less force: Making atomic force microscopy work for cells
8. Carl Zeiss Offers Online Promotions – Discounts on Stereomicroscopy and Converting to 3D Imaging
9. Depth charge: Using atomic force microscopy to study subsurface structures
10. Livermores DTEM earns innovation award from Microscopy Today
11. Applied Precision Installs New DeltaVision
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
ORNL microscopy generates new view of fuel cells
(Date:2/3/2016)... Sunnyvale, CA (PRWEB) , ... February 03, 2016 ... ... publisher of remote Linux and Unix visualization solutions today announced the addition of ... Session Preview allows users to see the current state of the remote Linux ...
(Date:2/3/2016)... -- Silk Therapeutics, Inc., today announced the closing of a $6 ... a total of $10.25 million in Series A funding based ... round was led by existing investor The Kraft Group of ... investors Lear Corporation and Highland Consumer Partners, as well as ... Richard Sackler , MD, with Summer Road, LLC; Erin ...
(Date:2/3/2016)... ... February 03, 2016 , ... ... aid in the rapid development and ongoing quality control of molecular assays targeting ... is extremely high,” Dr. Gregory R. Chiklis, President and CEO of ZeptoMetrix, relayed ...
(Date:2/3/2016)... ... February 03, 2016 , ... Marktech Optoelectronics, a ... wafers, and InP epi wafers based in Latham, New York, offers a ... and Avalanche photodiodes–to Si and InGaAs PIN photodiodes. But it is Marktech's newly ...
Breaking Biology Technology:
(Date:2/3/2016)... Calif. , Feb. 3, 2016 Vigilant ... Police Department in Missouri ... license plate reader (LPR) data from Vigilant Solutions. ... hit-and-run case in which the victim was walking out of a convenience ... parking space next to his vehicle, striking his vehicle ...
(Date:2/2/2016)... 2016 This BCC Research report provides ... reviewing the recent advances in high throughput ‘omic ... field forward. Includes forecast through 2019. ... and opportunities that exist in the bioinformatic market. ... as well as IT and bioinformatics service providers. ...
(Date:2/2/2016)... 2016   Parabon NanoLabs (Parabon) announced ... Research Office and the Defense Forensics and Biometrics ... the company,s Snapshot Kinship Inference software ... generally, defense-related DNA forensics.  Although Snapshot is best ... and ancestry from DNA evidence), it also has ...
Breaking Biology News(10 mins):