Navigation Links
Novel gate dielectric materials: perfection is not enough

For the first time theoretical modeling has provided a glimpse into how promising dielectric materials are able to trap charges, something which may affect the performance of advanced electronic devices. This is revealed in a paper published on the 12th October in Physical Review Letters by researchers at the London Centre for Nanotechnology and SEMATECH, a company in Austin, Texas.

Through the constant quest for miniaturization, transistors and all their components continue to decrease in size. A similar reduction has resulted in the thickness of a component material known as the gate dielectric typically a thin layer of silicon dioxide, which has now been in use for decades. Unfortunately, as the thickness of the gate dielectric decreases, silicon dioxide begins to leak current, leading to unwieldy power consumption and reduced reliability. Scientists hope that this material can be replaced with others, known as high-dielectric constant (or high-k) dielectrics, which mitigate the leakage effects at these tiny scales.

Metal oxides with high-k have attracted tremendous interest due to their application as novel materials in the latest generation of devices. The impetus for their practical introduction would be further helped if their ability to capture and trap charges and subsequent impact on instability of device performance was better understood. It has long been believed that these charge-trapping properties originate from structural imperfections in materials themselves. However, as is theoretically demonstrated in this publication, even if the structure of the high k dielectric material is perfect, the charges (either electrons or the absence of electrons known as holes) may experience self trapping. They do so by forming polarons a polarizing interaction of an electron or hole with the perfect surrounding lattice. Professor Alexander Shluger of the London Centre for Nanotechnology and the Department of Physics & Astronomy at UCL says: This creates an energy well which traps the charge, just like a deformation of a thin rubber film traps a billiard ball.

The resulting prediction is that at low temperatures electrons and holes in these materials can move by hopping between trapping sites rather than propagating more conventionally as a wave. This can have important practical implications for the materials electrical properties. In summary, this new understanding of the polaron formation properties of the transition metal oxides may open the way to suppressing undesirable characteristics in these materials.


Contact: David Weston
University College London

Related biology technology :

1. Novel PCR Enhancing Factor Improves Performance of Pfu DNA Polymerase
2. High-Fidelity PCR with a Novel Polymerase Mixture
3. Challenge the Performance of Your Hot-Start PCRs with FastStart Taq DNA Polymerase and the Novel FastStart High Fidelity PCR System
4. Combine High Yield, Great Accuracy and the Prevention of Carry-over Contamination by Using the Novel Expand High FidelityPLUS PCR System
5. Novel MicroRNA Array Technology for Sensitive miRNA Profiling
6. A Novel Process for Gene Expression Profiling of Rat and Mouse Tissues from Formalin-Fixed Paraffin-Embedded Sections Using Microarrays
7. Use of Novel FlashPlate Technology to Measure cAMP Accumulation in Chinese Hamster Ovary Cells Expressing Human -2 Adrenoreceptors
8. ESR1 Gene Expression in Oncology and Metabolic Diseases Using the ASCENTATM System Target Validation and Identification of Novel Disease Indications
9. Novel Bonding Chemistry Imparts Enhanced Polar Selectivity to TSK-GEL ODS-100V Reversed Phase Columns
10. Unique Surface Treatment of Novel TSK-GEL ODS Columns Provide Separation of Aqueous and Fat Soluble Vitamins
11. Life-sciences conference to feature novel research with clinical potential
Post Your Comments:
(Date:11/24/2015)... Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... that the remaining 11,000 post-share consolidation (or 1,100,000 ... (the "Series B Warrants") subject to the previously ... November 23, 2015, which will result in the ... effect to the issuance of such shares, there ...
(Date:11/24/2015)... ... 24, 2015 , ... InSphero AG, the leading supplier of easy-to-use solutions for ... Aregger to serve as Chief Operating Officer. , Having joined InSphero in ... and was promoted to Head of InSphero Diagnostics in 2014. There she ...
(Date:11/24/2015)... -- Capricor Therapeutics, Inc. (NASDAQ: CAPR ... and commercialization of first-in-class therapeutics, today announced that ... to present at the 2015 Piper Jaffray Healthcare Conference ... The Lotte New York Palace Hotel in ... --> . --> ...
(Date:11/24/2015)... and NEW YORK , November 24, 2015 ... by Bristol-Myers Squibb in a European ... Squibb Company in which the companies will work closely ... and other areas of unmet medical need. The collaboration is ... 5, the latest LSP fund. This is the first investment ...
Breaking Biology Technology:
(Date:10/29/2015)... ARBOR, Mich. , Oct. 29, 2015 /PRNewswire/ ... Eurofins Genomics for U.S. distribution of its DNA ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq kit. ... to enable the preparation of NGS libraries for ... plasma for diagnostic and prognostic applications in cancer ...
(Date:10/27/2015)... , Oct. 27, 2015 In the present ... of concern for various industry verticals such as banking, ... to the growing demand for secure & simplified access ... ,sectors, such as hacking of bank accounts, misuse of ... equipment such as PC,s, laptops, and smartphones are expected ...
(Date:10/26/2015)... LAS VEGAS , Oct. 26, 2015 ... in modern authentication and a founding member of the ... its latest version of the Nok Nok™ S3 Authentication ... standards-based authentication that supports existing and emerging methods of ... ideal for organizations deploying customer-facing applications that require Internet ...
Breaking Biology News(10 mins):