Navigation Links
Novel electronic biosensing technology could facilitate new era of personalized medicine
Date:9/21/2010

The multi-welled microplate, long a standard tool in biomedical research and diagnostic laboratories, could become a thing of the past thanks to new electronic biosensing technology developed by a team of microelectronics engineers and biomedical scientists at the Georgia Institute of Technology.

Essentially arrays of tiny test tubes, microplates have been used for decades to simultaneously test multiple samples for their responses to chemicals, living organisms or antibodies. Fluorescence or color changes in labels associated with compounds on the plates can signal the presence of particular proteins or gene sequences.

The researchers hope to replace these microplates with modern microelectronics technology, including disposable arrays containing thousands of electronic sensors connected to powerful signal processing circuitry. If they're successful, this new electronic biosensing platform could help realize the dream of personalized medicine by making possible real-time disease diagnosis potentially in a physician's office and by helping select individualized therapeutic approaches.

"This technology could help facilitate a new era of personalized medicine," said John McDonald, chief research scientist at the Ovarian Cancer Institute in Atlanta and a professor in the Georgia Tech School of Biology. "A device like this could quickly detect in individuals the gene mutations that are indicative of cancer and then determine what would be the optimal treatment. There are a lot of potential applications for this that cannot be done with current analytical and diagnostic technology."

Fundamental to the new biosensing system is the ability to electronically detect markers that differentiate between healthy and diseased cells. These markers could be differences in proteins, mutations in DNA or even specific levels of ions that exist at different amounts in cancer cells. Researchers are finding more and more differences like these that could be exploited to create fast and inexpensive electronic detection techniques that don't rely on conventional labels.

"We have put together several novel pieces of nanoelectronics technology to create a method for doing things in a very different way than what we have been doing," said Muhannad Bakir, an associate professor in Georgia Tech's School of Electrical and Computer Engineering. "What we are creating is a new general-purpose sensing platform that takes advantage of the best of nanoelectronics and three-dimensional electronic system integration to modernize and add new applications to the old microplate application. This is a marriage of electronics and molecular biology."

The three-dimensional sensor arrays are fabricated using conventional low-cost, top-down microelectronics technology. Though existing sample preparation and loading systems may have to be modified, the new biosensor arrays should be compatible with existing work flows in research and diagnostic labs.

"We want to make these devices simple to manufacture by taking advantage of all the advances made in microelectronics, while at the same time not significantly changing usability for the clinician or researcher," said Ramasamy Ravindran, a graduate research assistant in Georgia Tech's Nanotechnology Research Center and the School of Electrical and Computer Engineering.

A key advantage of the platform is that sensing will be done using low-cost, disposable components, while information processing will be done by reusable conventional integrated circuits connected temporarily to the array. Ultra-high density spring-like mechanically compliant connectors and advanced "through-silicon vias" will make the electrical connections while allowing technicians to replace the biosensor arrays without damaging the underlying circuitry.

Separating the sensing and processing portions allows fabrication to be optimized for each type of device, notes Hyung Suk Yang, a graduate research assistant also working in the Nanotechnology Research Center. Without the separation, the types of materials and processes that can be used to fabricate the sensors are severely limited.

The sensitivity of the tiny electronic sensors can often be greater than current systems, potentially allowing diseases to be detected earlier. Because the sample wells will be substantially smaller than those of current microplates allowing a smaller form factor they could permit more testing to be done with a given sample volume.

The technology could also facilitate use of ligand-based sensing that recognizes specific genetic sequences in DNA or messenger RNA. "This would very quickly give us an indication of the proteins that are being expressed by that patient, which gives us knowledge of the disease state at the point-of-care," explained Ken Scarberry, a postdoctoral fellow in McDonald's lab.

So far, the researchers have demonstrated a biosensing system with silicon nanowire sensors in a 16-well device built on a one-centimeter by one-centimeter chip. The nanowires, just 50 by 70 nanometers, differentiated between ovarian cancer cells and healthy ovarian epithelial cells at a variety of cell densities.

Silicon nanowire sensor technology can be used to simultaneously detect large numbers of different cells and biomaterials without labels. Beyond that versatile technology, the biosensing platform could accommodate a broad range of other sensors including technologies that may not exist yet. Ultimately, hundreds of thousands of different sensors could be included on each chip, enough to rapidly detect markers for a broad range of diseases.

"Our platform idea is really sensor agnostic," said Ravindran. "It could be used with a lot of different sensors that people are developing. It would give us an opportunity to bring together a lot of different kinds of sensors in a single chip."

Genetic mutations can lead to a large number of different disease states that can affect a patient's response to disease or medication, but current labeled sensing methods are limited in their ability to detect large numbers of different markers simultaneously.

Mapping single nucleotide polymorphisms (SNPs), variations that account for approximately 90 percent of human genetic variation, could be used to determine a patient's propensity for a disease, or their likelihood of benefitting from a particular intervention. The new biosensing technology could enable caregivers to produce and analyze SNP maps at the point-of-care.

Though many technical challenges remain, the ability to screen for thousands of disease markers in real-time has biomedical scientists like McDonald excited.

"With enough sensors in there, you could theoretically put all possible combinations on the array," he said. "This has not been considered possible until now because making an array large enough to detect them all with current technology is probably not feasible. But with microelectronics technology, you can easily include all the possible combinations, and that changes things."


'/>"/>

Contact: John Toon
jtoon@gatech.edu
404-894-6986
Georgia Institute of Technology Research News
Source:Eurekalert  

Related biology technology :

1. Norgen Biotek Corp. Launches a Novel kit to Collect, Concentrate, Preserve and Isolate DNA, RNA, microRNA and proteins from Urine Specimens
2. Reportlinker Adds Womens Health Therapeutics, Analysis and Market Forecasts to 2016 - High Unmet Need will Drive the Uptake of Novel Drugs in the Menopause and Osteoporosis Markets
3. Sangart, Inc. Reports Positive Phase IIa Data for Novel Oxygen Therapeutic Agent MP4OX in Severe Trauma Patients
4. Naurexs Novel Antidepressant GLYX-13 Recognized as One of Windhovers Top 10 Neuroscience Projects to Watch
5. Glenmark Announces the Discovery of a Novel Chemical Entity GRC 17536, a TRPA1 Receptor Antagonist, a Potential First-in-Class Molecule Globally
6. Novel Stem Cell Therapy From Cellonis Biotechnologies Can Help Children With Diabetes Get Back Their Normal Lives
7. OvaGene Oncology Licenses Gene-Based Technologies to Develop Novel Endometrial and Cervical Cancer Assays
8. Silence Therapeutics Issued Novel RNAi Patent Covering High-Value Cancer Target in United States
9. Trius Therapeutics Awarded U.S. Department of Defense Contract to Develop Novel Antibiotics
10. Novel Imaging Software Released by Celsense Inc.
11. Going for gold with a novel interventional radiology treatment for pancreatic cancer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Novel electronic biosensing technology could facilitate new era of personalized medicine
(Date:2/10/2016)... , Feb. 10, 2016 NX Prenatal ... its proprietary NeXosome® technology for early warning of ... its most recent study by Dr. Thomas ... the Society for Maternal Fetal Medicine,s (SMFM) annual meeting ... 1-6 th , 2016.  The presentation reported initial ...
(Date:2/10/2016)... 10, 2016  Matchbook, Inc., a company specializing ... biotech companies, announced today the appointment of ... Jim brings nearly 25 years of experience in ... spent nearly two decades in executive level roles ... at Genzyme and, most recently headed global logistics ...
(Date:2/10/2016)... ... February 10, 2016 , ... PatientCrossroads announces that ... secure online PatientCrossroads platform, has exceeded both its one-year and overall recruitment goals ... study, which seeks to advance understanding of the hereditary risks for certain kinds ...
(Date:2/9/2016)... ... February 09, 2016 , ... With a presidential election in ... Care Business Conference will bring together over 500 top healthcare leaders for a night ... transformation. The conference, organized by MBA students of the University of Pennsylvania’s Wharton School, ...
Breaking Biology Technology:
(Date:2/3/2016)... , Feb. 3, 2016 ... the addition of the "Emotion Detection ... Machine Learning, and Others), Software Tools (Facial ... Areas, End Users,and Regions - Global forecast ... --> http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) has ...
(Date:2/2/2016)... Va. , Feb. 2, 2016   ... award from the U.S. Army Research Office and ... the range and sensitivity of the company,s ... Past Accounting Mission and, more generally, defense-related DNA ... DNA phenotyping capabilities (predicting appearance and ancestry from ...
(Date:1/28/2016)... 2016 Synaptics (NASDAQ: SYNA ), a leading developer ... quarter ended December 31, 2015. --> ... 2016 increased 2 percent compared to the comparable quarter last year ... 2016 was $35.0 million, or $0.93 per diluted share. ... the first quarter of fiscal 2016 grew 9 percent over the ...
Breaking Biology News(10 mins):