Navigation Links
Next-generation nanoelectronics: A decade of progress, coming advances
Date:5/3/2012

Traditional silicon-based integrated circuits are found in many applications, from large data servers to cars to cell phones. Their widespread integration is due in part to the semiconductor industry's ability to continue to deliver reliable and scalable performance for decades.

However, while silicon-based circuits continue to shrink in size in the relentless pursuit of Moore's Law the prediction that the number of transistors that can fit on an integrated circuit doubles every two years power consumption is rising rapidly. In addition, conventional silicon electronics do not function well in extreme environments such as high temperatures or radiation.

In an effort to sustain the advance of these devices while curbing power consumption, diverse research communities are looking for hybrid or alternative technologies. Nanoelectromechanical (NEM) switch technology is one option that shows great promise.

"NEM switches consist of a nanostructure (such as a carbon nanotube or nanowire) that deflects mechanically under electrostatic forces to make or break contact with an electrode," said Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering at Northwestern University.

NEM switches, which can be designed to function like a silicon transistor, could be used either in standalone or hybrid NEM-silicon devices. They offer both ultra-low power consumption and a strong tolerance of high temperatures and radiation exposure.

Given their potential, the past decade has seen significant attention to the development of both hybrid and standalone NEM devices. This decade of progress is reviewed by Espinosa's group in the current issue of journal Nature Nanotechnology. Their review provides a comprehensive discussion of the potential of these technologies, as well as the primary challenges associated with adopting them.

For example, one longstanding challenge has been to create arrays of millions of the nanostructures, such as carbon nanotubes, that are used to make these NEM devices. (For perspective, modern silicon electronics can have billions of transistors on a single chip.) The researchers' review describes the methods demonstrated to date to create these arrays, and how they may provide a path to realizing hybrid NEM-CMOS devices on a mass scale.

Similarly, while individual NEM devices show extremely high performance, it has proven difficult so far to make them operate reliably for millions of cycles, which is necessary if they are to be used in consumer electronics. The review details the various modes of failure and describes promising methods for overcoming them.

An example of the advances that facilitate improved robustness of NEM switch technologies is reported in the current issue of Advanced Materials. Here Espinosa and his group show how novel material selection can greatly improve the robustness of both hybrid NEM-CMOS and standalone NEM devices.

"NEM devices with commonly-used metal electrodes often fail by one of a variety of failure modes after only a few actuation cycles," said Owen Loh, a PhD student at Northwestern University and co-author of the paper, currently at Intel.

Simply by replacing the metal electrodes with electrodes made from conductive diamond-like carbon films, the group was able to dramatically improve the number of cycles these devices endure. Switches that originally failed after fewer than 10 cycles now operated for 1 million cycles without failure. This facile yet effective advance may provide a key step toward realizing the NEM devices whose potential is outlined in the recent review.

The work reported in Advanced Materials was a joint collaboration between Northwestern University, the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the Center for Nanoscale Materials at Argonne National Laboratories. Funding was provided by the National Science Foundation, the Army Research Office, The U.S. Department of Energy, and the Office of Naval Research.

"Ultimately, realizing next-generation hybrid NEM-CMOS devices will enable continued scaling of the electronics that power numerous systems we encounter on a daily basis," Espinosa said. "At the same time, it will require continued push from the engineering, basic sciences, and materials science communities."


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology technology :

1. MicuRx Pharmaceuticals Selects Next-Generation Antibiotic Candidate Targeting MRSA and Expands Operation in China
2. Isilon IQ Powers Data Storage for Next-Generation DNA Sequencing
3. Capture of nanomagnetic fingerprints a boost for next-generation information storage media
4. Automated Sequence Capture for Next-Generation Sequencing Paves the Way for Personalized Medicine
5. Enerkem announces plans to enter the United States with next-generation biofuels project in Mississippi
6. Cell Biosciences Launches Next-Generation Protein Characterization System
7. VisEn Launches Next-Generation Fast (Fluorescence Activatible Sensor Technology) Agent Platform for Expanded Performance in Imaging Disease Biomarkers In Vivo
8. SeqWright Expands into the Genetically-Targeted Therapy Field by Partnering with PharmaGenoma to Provide Next-Generation Hair Loss Treatment Genetic Testing
9. FDA Approves Boston Scientifics Next-Generation TAXUS(R) Liberte(R) Atom(TM) Stent System
10. Angiotech Pharmaceuticals announces FDA approval of next-generation TAXUS(R) Liberte(R) Atom(TM) Stent system
11. Advanced Instruments Introduces Next-Generation Web Site
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... 23, 2016 Houston Methodist Willowbrook Hospital ... Sports Association to serve as their official health ... Methodist Willowbrook will provide sponsorship support, athletic training ... association coaches, volunteers, athletes and families. ... Sports Association and to bring Houston Methodist quality ...
(Date:6/23/2016)... 23, 2016   EpiBiome , a precision microbiome ... in debt financing from Silicon Valley Bank (SVB). The ... to advance its drug development efforts, as well as ... "SVB has been an incredible strategic partner to ... traditional bank would provide," said Dr. Aeron Tynes ...
(Date:6/23/2016)... , June 23, 2016 Apellis ... Phase 1 clinical trials of its complement C3 ... single and multiple ascending dose studies designed to ... (PD) of subcutaneous injection in healthy adult volunteers. ... (SC) either as a single dose (ranging from ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only free validated ... will showcase its product’s latest features from June 26 to June 30, 2016 ... on Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug ...
Breaking Biology Technology:
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
(Date:4/14/2016)... BioCatch ™, the global ... the appointment of Eyal Goldwerger as CEO. ... Goldwerger,s leadership appointment comes at a time of significant ... of its platform at several of the world,s largest ... unique cognitive and physiological factors, is a winner of ...
(Date:3/23/2016)... , March 23, 2016 ... Interesse erhöhter Sicherheit Gesichts- und Stimmerkennung mit ... Inc. (NASDAQ: MESG ), ein ... dass das Unternehmen mit SpeechPro zusammenarbeitet, um ... der Finanzdienstleistungsbranche, wird die Möglichkeit angeboten, im ...
Breaking Biology News(10 mins):