Navigation Links
New transistors: An alternative to silicon and better than graphene
Date:1/30/2011

Smaller and more energy-efficient electronic chips could be made using molybdenite. In an article appearing online January 30 in the journal Nature Nanotechnology, EPFL's Laboratory of Nanoscale Electronics and Structures (LANES) publishes a study showing that this material has distinct advantages over traditional silicon or graphene for use in electronics applications.

A discovery made at EPFL could play an important role in electronics, allowing us to make transistors that are smaller and more energy efficient. Research carried out in the Laboratory of Nanoscale Electronics and Structures (LANES) has revealed that molybdenite, or MoS2, is a very effective semiconductor. This mineral, which is abundant in nature, is often used as an element in steel alloys or as an additive in lubricants. But it had not yet been extensively studied for use in electronics.

100,000 times less energy

"It's a two-dimensional material, very thin and easy to use in nanotechnology. It has real potential in the fabrication of very small transistors, light-emitting diodes (LEDs) and solar cells," says EPFL Professor Andras Kis, whose LANES colleagues M. Radisavljevic, Prof. Radenovic et M. Brivio worked with him on the study. He compares its advantages with two other materials: silicon, currently the primary component used in electronic and computer chips, and graphene, whose discovery in 2004 earned University of Manchester physicists Andr Geim and Konstantin Novoselov the 2010 Nobel Prize in Physics.

One of molybdenite's advantages is that it is less voluminous than silicon, which is a three-dimensional material. "In a 0.65-nanometer-thick sheet of MoS2, the electrons can move around as easily as in a 2-nanometer-thick sheet of silicon," explains Kis. "But it's not currently possible to fabricate a sheet of silicon as thin as a monolayer sheet of MoS2." Another advantage of molybdenite is that it can be used to make transistors that consume 100,000 times less energy in standby state than traditional silicon transistors. A semi-conductor with a "gap" must be used to turn a transistor on and off, and molybdenite's 1.8 electron-volt gap is ideal for this purpose.

Better than graphene

In solid-state physics, band theory is a way of representing the energy of electrons in a given material. In semi-conductors, electron-free spaces exist between these bands, the so-called "band gaps." If the gap is not too small or too large, certain electrons can hop across the gap. It thus offers a greater level of control over the electrical behavior of the material, which can be turned on and off easily.

The existence of this gap in molybdenite also gives it an advantage over graphene. Considered today by many scientists as the electronics material of the future, the "semi-metal" graphene doesn't have a gap, and it is very difficult to artificially reproduce one in the material.


'/>"/>

Contact: Michael Mitchell
michael.mitchell@epfl.ch
41-798-103-107
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert  

Related biology technology :

1. Alfacell Hires Advisors to Advance Strategic Alternatives
2. CPC of America, Inc. to Explore Strategic Alternatives; Appoints FTI Capital Advisors to Assess Potential Opportunities
3. Verenium Corporation to Speak at the Credit Suisse Alternative Energy Conference
4. ZhenSpa.com provides Spa Enthusiasts Affordable Alternatives for Expensive Spa Treatments
5. New uses for imidazolium salts in medicine and alternative energy
6. N-Viro Fuel Technology Receives Alternative Energy Status From the U.S. Environmental Protection Agency
7. XTENT to Retain Investment Bank to Pursue Strategic Alternatives
8. XTL Biopharmaceuticals Provides Update on Potential Strategic Alternatives
9. Quest PharmaTech Announces a Review of Strategic Alternatives to Enhance Shareholder Value
10. Secretropin(R) - Effective, Preferable, Affordable as an Alternative to Injectable Growth Hormone - Gains Momentum
11. CTI Seeks Strategic Alternative for Italian Facility
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New transistors: An alternative to silicon and better than graphene
(Date:1/13/2017)... ... January 13, 2017 , ... FireflySci, in response to several ... new solutions for measurements where traditional cuvette applications are not convenient. For instance, ... oddly-shaped sample that would not fit into a typical cuvette inside a spectrophotometer. ...
(Date:1/12/2017)... ... January 12, 2017 , ... Each year, Crain’s Detroit ... – a process that evaluates the patent estate of a company, its impact and ... a biomedical firm leading the way in technologies that transform energy sources such as ...
(Date:1/12/2017)... ... January 12, 2017 , ... Huffman Engineering, Inc. , a ... will work in the company’s Lincoln office as a chemical engineer. In his ... systems for customers in the life science manufacturing and water/wastewater industries. , Prior to ...
(Date:1/12/2017)... The Energy and Resources Institute ... producing mycorrhizae. The Centre for Mycorrhizal Research at TERI ... and developed a technology that eventually produces mycorrhizae based ... ... The TERI facility has a production capacity of over ...
Breaking Biology Technology:
(Date:12/22/2016)... MOUNTAIN VIEW, Calif. , Dec. 20, 2016  As ... all levels, 23andMe, the leading personal genetics company, recently released ... Only Me . The book focuses on the topics ... the Next Generation Science Standards (NGSS) taught in elementary school ... the second in a series by illustrator Ariana Killoran ...
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell , ... technology, and STMicroelectronics (NYSE: STM), a global ... electronics applications, announced today the launch of a ... biometric wearables that includes ST,s compact SensorTile ... Benchmark™ biometric sensor system. Together, SensorTile and ...
(Date:12/16/2016)... -- Research and Markets has announced the addition of ... 2021" report to their offering. ... The biometric vehicle access system market, in ... 14.06% from 2016 to 2021. The market is estimated to be ... Million by 2021. The growth of the biometric vehicle access system ...
Breaking Biology News(10 mins):