Navigation Links
New spin on graphene
Date:4/15/2011

A team led by Professor Andre Geim, a recipient of the 2010 Nobel Prize for graphene, can now show that electric current a flow of electrons can magnetise graphene.

The results, reported in Science, could be a potentially huge breakthrough in the field of spintronics.

Spintronics is a group of emerging technologies that exploit the intrinsic spin of the electron, in addition to its fundamental electric charge that is exploited in microelectronics.

Billions of spintronics devices such as sensors and memories are already being produced. Every hard disk drive has a magnetic sensor that uses a flow of spins, and magnetic random access memory (MRAM) chips are becoming increasingly popular.

The findings are part of a large international effort involving research groups from the US, Russia, Japan and the Netherlands.

The key feature for spintronics is to connect the electron spin to electric current as current can be manipulated by means routinely used in microelectronics.

It is believed that, in future spintronics devices and transistors, coupling between the current and spin will be direct, without using magnetic materials to inject spins as it is done at the moment.

So far, this route has only been demonstrated by using materials with so-called spin-orbit interaction, in which tiny magnetic fields created by nuclei affect the motion of electrons through a crystal. The effect is generally small which makes it difficult to use.

The researchers found a new way to interconnect spin and charge by applying a relatively weak magnetic field to graphene and found that this causes a flow of spins in the direction perpendicular to electric current, making a graphene sheet magnetised.

The effect resembles the one caused by spin-orbit interaction but is larger and can be tuned by varying the external magnetic field.

The Manchester researchers also show that graphene placed on boron nitride is an ideal material for spintronics because the induced magnetism extends over macroscopic distances from the current path without decay.

The team believes their discovery offers numerous opportunities for redesigning current spintronics devices and making new ones such as spin-based transistors.

Professor Geim said: "The holy grail of spintronics is the conversion of electricity into magnetism or vice versa.

"We offer a new mechanism, thanks to unique properties of graphene. I imagine that many venues of spintronics can benefit from this finding."

Antonio Castro Neto, a physics professor from Boston who wrote a news article for the Science magazine which accompanies the research paper commented: "Graphene is opening doors for many new technologies.

"Not surprisingly, the 2010 Nobel Physics prize was awarded to Andre Geim and Kostya Novoselov for their groundbreaking experiments in this material.

"Apparently not satisfied with what they have accomplished so far, Geim and his collaborators have now demonstrated another completely unexpected effect that involves quantum mechanics at ambient conditions. This discovery opens a new chapter to the short but rich history of graphene".


'/>"/>

Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
0044-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Graphene pioneers follow in Nobel footsteps
2. New graphene-based material clarifies graphite oxide chemistry
3. Researchers discover method for mass production of nanomaterial graphene
4. Light-speed nanotech: Controlling the nature of graphene
5. Scientists prove graphenes edge structure affects electronic properties
6. Graphene yields secrets to its extraordinary properties
7. Graphene may have advantages over copper for IC interconnects at the nanoscale
8. Bilayer graphene gets a bandgap
9. Material world: Graphenes versatility promises new applications
10. UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
11. Researchers design new graphene-based, nano-material with magnetic properties
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/11/2016)... ... February 11, 2016 , ... ... announced a new agreement with Bankok,Thailand-based Global Stem Cells Network (GSCN) to distribute ... 15 Latin American countries, including Mexico, Costa Rica, Dominican Republic, Colombia, Argentina, Nicaragua, ...
(Date:2/10/2016)... , Feb. 10, 2016 NX Prenatal Inc., ... proprietary NeXosome® technology for early warning of adverse ... most recent study by Dr. Thomas McElrath ... Society for Maternal Fetal Medicine,s (SMFM) annual meeting held ... th , 2016.  The presentation reported initial positive ...
(Date:2/10/2016)... -- Matchbook, Inc., a company specializing in procurement and ... today the appointment of Jim Shuman ... 25 years of experience in supply chain, logistics ... decades in executive level roles as the SVP ... most recently headed global logistics and procurement at ...
(Date:2/10/2016)... ... February 10, 2016 , ... PatientCrossroads ... on the secure online PatientCrossroads platform, has exceeded both its one-year and overall ... the PROMPT study, which seeks to advance understanding of the hereditary risks for ...
Breaking Biology Technology:
(Date:1/25/2016)... , Jan. 25, 2016  Glencoe Software, the world-leading ... and publication industries, will provide the data management solution ... (NPSC). ... Phenotypic analysis measures the ... organisms, allowing comparisons between states such as health and ...
(Date:1/21/2016)... India , January 21, 2016 ... According to a new market research report "Emotion Detection ... and Others), Software Tools (Facial Expression, Voice Recognition ... Regions - Global forecast to 2020", published by ... is expected to reach USD 22.65 Billion by ...
(Date:1/20/2016)... Jan. 20, 2016  Synaptics Incorporated (NASDAQ: ... solutions, today announced sampling of S1423, its newest ... and small screen applications including smartwatches, fitness trackers, ... round and rectangular shapes, as well as thick ... with moisture on screen, while wearing gloves, and ...
Breaking Biology News(10 mins):