Navigation Links
New spin on graphene
Date:4/15/2011

A team led by Professor Andre Geim, a recipient of the 2010 Nobel Prize for graphene, can now show that electric current a flow of electrons can magnetise graphene.

The results, reported in Science, could be a potentially huge breakthrough in the field of spintronics.

Spintronics is a group of emerging technologies that exploit the intrinsic spin of the electron, in addition to its fundamental electric charge that is exploited in microelectronics.

Billions of spintronics devices such as sensors and memories are already being produced. Every hard disk drive has a magnetic sensor that uses a flow of spins, and magnetic random access memory (MRAM) chips are becoming increasingly popular.

The findings are part of a large international effort involving research groups from the US, Russia, Japan and the Netherlands.

The key feature for spintronics is to connect the electron spin to electric current as current can be manipulated by means routinely used in microelectronics.

It is believed that, in future spintronics devices and transistors, coupling between the current and spin will be direct, without using magnetic materials to inject spins as it is done at the moment.

So far, this route has only been demonstrated by using materials with so-called spin-orbit interaction, in which tiny magnetic fields created by nuclei affect the motion of electrons through a crystal. The effect is generally small which makes it difficult to use.

The researchers found a new way to interconnect spin and charge by applying a relatively weak magnetic field to graphene and found that this causes a flow of spins in the direction perpendicular to electric current, making a graphene sheet magnetised.

The effect resembles the one caused by spin-orbit interaction but is larger and can be tuned by varying the external magnetic field.

The Manchester researchers also show that graphene placed on boron nitride is an ideal material for spintronics because the induced magnetism extends over macroscopic distances from the current path without decay.

The team believes their discovery offers numerous opportunities for redesigning current spintronics devices and making new ones such as spin-based transistors.

Professor Geim said: "The holy grail of spintronics is the conversion of electricity into magnetism or vice versa.

"We offer a new mechanism, thanks to unique properties of graphene. I imagine that many venues of spintronics can benefit from this finding."

Antonio Castro Neto, a physics professor from Boston who wrote a news article for the Science magazine which accompanies the research paper commented: "Graphene is opening doors for many new technologies.

"Not surprisingly, the 2010 Nobel Physics prize was awarded to Andre Geim and Kostya Novoselov for their groundbreaking experiments in this material.

"Apparently not satisfied with what they have accomplished so far, Geim and his collaborators have now demonstrated another completely unexpected effect that involves quantum mechanics at ambient conditions. This discovery opens a new chapter to the short but rich history of graphene".


'/>"/>

Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
0044-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Graphene pioneers follow in Nobel footsteps
2. New graphene-based material clarifies graphite oxide chemistry
3. Researchers discover method for mass production of nanomaterial graphene
4. Light-speed nanotech: Controlling the nature of graphene
5. Scientists prove graphenes edge structure affects electronic properties
6. Graphene yields secrets to its extraordinary properties
7. Graphene may have advantages over copper for IC interconnects at the nanoscale
8. Bilayer graphene gets a bandgap
9. Material world: Graphenes versatility promises new applications
10. UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
11. Researchers design new graphene-based, nano-material with magnetic properties
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/20/2017)... ... January 20, 2017 , ... ... Technologies, announced today the next evolution in spinal fusion, the MISquito Percutaneous ... contrast to the competition, SpineFrontier is focused on technique driven product solutions ...
(Date:1/19/2017)... HOUSTON , Jan. 19, 2017 /PRNewswire/ ... the formation of its Medical/Clinical Advisory Board.  This ... veterans who enhance the range and depth of ... of its novel prenatal diagnostic tests.  These experts ... strategic guidance for the company,s product development and ...
(Date:1/19/2017)... ... January 19, 2017 , ... Genedata, ... (R&D), today announced the launch of Data Science Services , offering ... evolving field of precision medicine. , Data Science Services allows pharmaceutical ...
(Date:1/19/2017)... , Jan. 19, 2017  ArmaGen, Inc., ... Schmidt , Ph.D., as chief executive officer, as ... directors. Dr. Schmidt brings to ArmaGen more than 17 ... research and development of biotherapeutics and pharmaceuticals. ... with the diverse experience and skillset necessary to ...
Breaking Biology Technology:
(Date:12/15/2016)... Germany , December 15, 2016 ... provider, today announced an agreement with NuData Security, an ... forces. The partnership will enable clients to focus on good ... local data protection regulation. ... In order to provide a one-stop fraud ...
(Date:12/15/2016)... LONDON , Dec. 15, 2016 /PRNewswire/ ... the driving experience, health wellness and wellbeing ... As one in three new passenger vehicles ... voice recognition, gesture recognition, heart beat monitoring, ... eyelid monitoring, facial monitoring, and pulse detection. ...
(Date:12/12/2016)... Dec. 12, 2016  Researchers at Trinity College, ... graphene by combining the material with Silly Putty. The ... pressure detector able to sense pulse, blood pressure, ... spider.  The research team,s findings ... read here:  http://science.sciencemag.org/content/354/6317/1257 ...
Breaking Biology News(10 mins):