Navigation Links
New solar cell self-repairs like natural plant systems
Date:1/4/2011

WEST LAFAYETTE, Ind. - Researchers are creating a new type of solar cell designed to self-repair like natural photosynthetic systems in plants by using carbon nanotubes and DNA, an approach aimed at increasing service life and reducing cost.

"We've created artificial photosystems using optical nanomaterials to harvest solar energy that is converted to electrical power," said Jong Hyun Choi, an assistant professor of mechanical engineering at Purdue University.

The design exploits the unusual electrical properties of structures called single-wall carbon nanotubes, using them as "molecular wires in light harvesting cells," said Choi, whose research group is based at the Birck Nanotechnology and Bindley Bioscience centers at Purdue's Discovery Park.

"I think our approach offers promise for industrialization, but we're still in the basic research stage," he said.

Photoelectrochemical cells convert sunlight into electricity and use an electrolyte - a liquid that conducts electricity - to transport electrons and create the current. The cells contain light-absorbing dyes called chromophores, chlorophyll-like molecules that degrade due to exposure to sunlight.

"The critical disadvantage of conventional photoelectrochemical cells is this degradation," Choi said.

The new technology overcomes this problem just as nature does: by continuously replacing the photo-damaged dyes with new ones.

"This sort of self-regeneration is done in plants every hour," Choi said.

The new concept could make possible an innovative type of photoelectrochemical cell that continues operating at full capacity indefinitely, as long as new chromophores are added.

Findings were detailed in a November presentation during the International Mechanical Engineering Congress and Exhibition in Vancouver. The concept also was unveiled in an online article (http://spie.org/x41475.xml?ArticleID=x41475) featured on the Web site for SPIE, an international society for optics and photonics.

The talk and article were written by Choi, doctoral students Benjamin A. Baker and Tae-Gon Cha, and undergraduate students M. Dane Sauffer and Yujun Wu.

The carbon nanotubes work as a platform to anchor strands of DNA. The DNA is engineered to have specific sequences of building blocks called nucleotides, enabling them to recognize and attach to the chromophores.

"The DNA recognizes the dye molecules, and then the system spontaneously self-assembles," Choi said

When the chromophores are ready to be replaced, they might be removed by using chemical processes or by adding new DNA strands with different nucleotide sequences, kicking off the damaged dye molecules. New chromophores would then be added.

Two elements are critical for the technology to mimic nature's self-repair mechanism: molecular recognition and thermodynamic metastability, or the ability of the system to continuously be dissolved and reassembled.

The research is an extension of work that Choi collaborated on with researchers at the Massachusetts Institute of Technology and the University of Illinois. The earlier work used biological chromophores taken from bacteria, and findings were detailed in a research paper published in November in the journal Nature Chemistry (http://www.nature.com/nchem/journal/v2/n11/abs/nchem.822.html).

However, using natural chromophores is difficult, and they must be harvested and isolated from bacteria, a process that would be expensive to reproduce on an industrial scale, Choi said.

"So instead of using biological chromophores, we want to use synthetic ones made of dyes called porphyrins," he said.


'/>"/>

Contact: Emil Venere
venere@purdue.edu
765-494-4709
Purdue University
Source:Eurekalert  

Related biology technology :

1. Flexible nanoantenna arrays capture abundant solar energy
2. Understanding the science of solar-based energy: more researchers are better than one
3. New solar energy material captures every color of the rainbow
4. Solar power game-changer: Near perfect absorption of sunlight, from all angles
5. TU/e awarded for knowledge transfer to solar energy industry
6. Enhancing solar cells with nanoparticles
7. U of T chemistry discovery brings organic solar cells a step closer
8. Research highlights potential for improved solar cells
9. Cheaper materials could be key to low-cost solar cells
10. University of Alberta and NINT researchers make solar energy breakthrough
11. Ancient diatoms lead to new technology for solar energy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New solar cell self-repairs like natural plant systems
(Date:12/2/2016)... ... December 02, 2016 , ... Robots will storm the Prudential Center in ... 2016. The event, which is held on the United Nations International Day of Persons ... back into the workplace. Suitable Technologies is partnering with NTI to showcase how technology ...
(Date:11/30/2016)... (PRWEB) , ... November 30, 2016 , ... ... new moving magnet Voice Coil Actuator with a flexure design that ensures high ... life with cost-effective pricing and is ideally suited where extreme precision is required, ...
(Date:11/30/2016)... BOCA RATON, Fla. , Nov. 30, 2016 /PRNewswire/ ... immunological biotherapeutic products, is pleased to announce the addition ... 1st Avenue Kearney, Nebraska . The ... for business on November 29th, 2016 and brings the ... Ileana Carlisle , BPC,s Chief ...
(Date:11/30/2016)... BEIJING , Nov. 30, 2016 /PRNewswire/ ... of genomic services and solutions with cutting edge next-generation ... has completed a USD $75 Million [515 Million RMB] ... CMB International Capital Management ( Shenzhen ) ... Ltd. ("SDIC Innovation") and Shanghai Sigma Square Investment Center ...
Breaking Biology Technology:
(Date:6/21/2016)... 21, 2016 NuData Security announced today that ... of principal product architect and that Jon ... customer development. Both will report directly to ... moves reflect NuData,s strategic growth in its product ... customer demand and customer focus values. ...
(Date:6/15/2016)... ALBANY, New York , June 15, 2016 ... published a new market report titled "Gesture Recognition Market ... Trends and Forecast, 2016 - 2024". According to the ... at USD 11.60 billion in 2015 and is ... and reach USD 48.56 billion by 2024.  ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
Breaking Biology News(10 mins):