Navigation Links
New research gives insight into graphene grain boundaries
Date:1/15/2013

Using graphene either as an alternative to, or most likely as a complementary material with silicon, offers the promise of much faster future electronics, along with several other advantages over the commonly used semiconductor. However, creating the one-atom thick sheets of carbon known as graphene in a way that could be easily integrated into mass production methods has proven difficult.

When graphene is grown, lattices of the carbon grains are formed randomly, linked together at different angles of orientation in a hexagonal network. However, when those orientations become misaligned during the growth process, defects called grain boundaries (GBs) form. These boundaries scatter the flow of electrons in graphene, a fact that is detrimental to its successful electronic performance.

Researchers Joe Lyding and Eric Pop from the University of Illinois' Beckman Institute and their research groups have now given new insight into the electronics behavior of graphene with grain boundaries that could guide fabrication methods toward lessening their effect. The researchers grew polycrystalline graphene by chemical vapor deposition (CVD), using scanning tunneling microscopy and spectroscopy for analysis, to examine at the atomic scale grain boundaries on a silicon wafer. They reported their results in the journal ACS Nano.

"We obtained information about electron scattering at the boundaries that shows it significantly limits the electronic performance compared to grain boundary free graphene," Lyding said. "Grain boundaries form during graphene growth by CVD, and, while there is much worldwide effort to minimize the occurrence of grain boundaries, they are a fact of life for now.

"For electronics you would want to be able to make it on a wafer scale. Boundary free graphene is a key goal. In the interim we have to live with the grain boundaries, so understanding them is what we're trying to do."

Lyding compared graphene lattices made with the CVD method to pieces of a cyclone fence.

"If you had two pieces of fence, and you laid them on the ground next to each other but they weren't perfectly aligned, then they wouldn't match," he said. "That's a grain boundary, where the lattice doesn't match."

The research involved Pop's group, led by Beckman Fellow Josh Wood, growing the graphene at the Micro and Nanotechnology Lab, and transferring the thin films to a silicon (Si02) wafer. They then used the STM at Beckman developed by Lyding for analysis, led by first author Justin Koepke of Lyding's group.

Their analysis showed that when the electrons' itinerary takes them to a grain boundary, it is like, Lyding said, hitting a hill.

"The electrons hit this hill, they bounce off, they interfere with themselves and you actually see a standing wave pattern," he said. "It's a barrier so they have to go up and over that hill. Like anything else, that is going to slow them down. That's what Justin was able to measure with these spectroscopy measurements.

"Basically a grain boundary is a resistor in series with a conductor. That's always bad. It means it's going to take longer for an electron to get from point A to point B with some voltage applied."

Images from the STM reveal grain boundaries that suggest two pieces of cloth sewn together, Lyding said, by "a really bad tailor."

In the paper, the researchers were able to report on their analysis of the orientation angles between pieces of graphene as they grew together, and found "no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and Si02 topography." They reported that analysis of those patterns "indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene."

Lyding said that the relationship between the orientation angle of the pieces of graphene and the wavelength of an electron impinges on the electron's movement at the grain boundary, leading to variations in their scattering.

"More scattering means that it is making it more difficult for an electron to move from one grain to the next," he said. "The more difficult you make that, the lower the quality of the electronic performance of any device made from that graphene."

The researchers work is aimed not just at understanding, but also at controlling grain boundaries. One of their findings that GBs are aperiodic replicated other work and could have implications for controlling them, as they wrote in the paper: "Combining the spectroscopic and scattering results suggest that GBs that are more periodic and well-ordered lead to reduced scattering from the GBs."

"I think if you have to live with grain boundaries you would like to be able to control exactly what their orientation is and choose an angle that minimizes the scattering," Lyding said.


'/>"/>

Contact: Steve McGaughey
smcgaugh@illinois.edu
217-244-5582
Beckman Institute for Advanced Science and Technology
Source:Eurekalert  

Related biology technology :

1. Sustainable Valley Technology Group Provides Technology Innovation Grant To Help Researchers & Start-Ups With Funding, Business Support, Equipment & Facilities
2. Live Webinar on Protection of Phase 1 Research Volunteers
3. Rockingham County Economic Development Launches New Website to Market Research and Tech Park
4. Verified Clinical Trials Will Exhibit at the Annual 2013 SCOPE Summit to Discuss the Professional Research Subject and the Clinical Trial Database Registry
5. New Research Helps Explain Weakened Immune Response in Elderly
6. Penn researchers show new level of control over liquid crystals
7. Market for Biologic Imaging Reagents and Medical Imaging & Diagnosing Analyzed in New Research Reports at ReportsnReports.com
8. Carin Grings remains identified by researchers at Uppsala University
9. LA Dental Bone Graft Substitute & Other Biomaterials Market Reviewed in New iData Research Report Available at MarketPublishers.com
10. Liquid crystal research, future applications advance
11. New funding to research super material graphene
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New research gives insight into graphene grain boundaries
(Date:11/30/2016)... The global Pyrogen Testing Market ... dominant share in the overall market. The leading players, ... Merck KGaA, held a lion,s share of 51% in ... that these companies are expected to retain their leadership ... do not require rabbit pyrogen testing along with strategic ...
(Date:11/30/2016)... , Nov. 30, 2016 Biotest Pharmaceuticals ... is pleased to announce the addition of its newest ... Kearney, Nebraska . The 15,200 square foot ... November 29th, 2016 and brings the total number of ... Ileana Carlisle , BPC,s Chief Executive Officer said ...
(Date:11/30/2016)... -  Equicare Health Inc ., the leading supplier of ... of the top 100 companies in the 2016 Global ... the top digital health companies across the globe.   ... year continually upgrading our product with the ongoing digital ... says Len Grenier , CEO of Equicare Health, ...
(Date:11/30/2016)... BEIJING , Nov. 30, 2016 Novogene ... services and solutions with cutting edge next-generation sequencing (NGS) ... a USD $75 Million [515 Million RMB] B round ... Capital Management ( Shenzhen ) Co., Ltd. ... Innovation") and Shanghai Sigma Square Investment Center LP ("Sigma ...
Breaking Biology Technology:
(Date:11/29/2016)... 2016 BioDirection, a privately held medical device ... objective detection of concussion and other traumatic brain injury ... a meeting with the U.S. Food and Drug Administration ... Package. During the meeting company representatives reviewed plans for ... to commencement of a planned pilot trial. ...
(Date:11/28/2016)... LONDON , Nov. 28, 2016 ... at a rate of 16.79%" The biometric system ... to grow further in the near future. The biometric ... 32.73 billion in 2022, at a CAGR of 16.79% ... biometrics system, integration of biometric technology in smartphones, rising ...
(Date:11/22/2016)... , Nov. 22, 2016   MedNet Solutions , ... entire spectrum of clinical research, is pleased to announce ... LiveWire Healthcare and Life Sciences Awards as "Most ... off an unprecedented year of recognition and growth for ... over 15 years. iMedNet ™ ...
Breaking Biology News(10 mins):