Navigation Links
New process promises to revolutionize manufacturing of products
Date:9/1/2010

WATERLOO, Ont. (Wednesday, Sept. 1, 2010) - A new "smart materials" process - Multiple Memory Material Technology - developed by University of Waterloo engineering researchers promises to revolutionize the manufacture of diverse products such as medical devices, microelectromechanical systems (MEMS), printers, hard drives, automotive components, valves and actuators.

The breakthrough technology will provide engineers with much more freedom and creativity by enabling far greater functionality to be incorporated into medical devices such as stents, braces and hearing aids than is currently possible.

Smart materials, also known as shape memory alloys, have been around for several decades and are well known for their ability to remember a pre-determined shape.

Traditional memory materials remember one shape at one temperature and a second shape at a different temperature. Until now they have been limited to change shape at only one temperature. Now with the new Waterloo technology they can remember multiple different memories, each one with a different shape.

"This ground-breaking technology makes smart materials even smarter," said Ibraheem Khan, a research engineer and graduate student working with Norman Zhou, a professor of mechanical and mechatronics engineering. "We have developed a technology that embeds several memories in a monolithic smart material. In essence, a single material can be programmed to remember more shapes, making it smarter than previous technologies."

The patent pending technology, which is available for licensing, allows virtually any memory material to be quickly and easily embedded with additional local memories.

The transition zone area can be as small as a few microns in width with multiple zones, each having a discrete transition temperature. As the processed shape memory material is subject to changing temperature, each treated zone will change shape at its respective transition temperature. As well, transition zones created side-by-side allow for a unique and smooth shape change in response to changing temperature.

Several prototypes have been developed to demonstrate this pioneering technology.

One mimics a transformer robot. The robot's limbs transform with increasing temperature at discrete temperatures, whereas in conventional shape memory technology this is limited to only one transformation temperature.


'/>"/>

Contact: John Morris
jmorris@uwaterloo.ca
519-888-4435
University of Waterloo
Source:Eurekalert

Related biology technology :

1. Bion Announces Approval of New U.S. Patent for Phosphorus Removal Process for Livestock Waste Environmental Treatment
2. Early-Bird Registration Ends this Week for 10th Annual Quality Excellence Conference: How Process Improvement Leaders Produce Profits in Recessions
3. Human Genome Sciences Announces Process Development and Manufacturing Alliance With Hospira
4. Researchers decode viral process that prepares cells for HIV infection
5. MonoSol Rx Granted Strategic US Patent for Thin Film Manufacturing Process
6. First 3-D processor runs at 1.4 Ghz on new architecture
7. Cyntellect Launches CellXpress(TM) System to Boost Productivity of Biopharmaceutical Process Development
8. Gores Legacy of Innovation Extends From Products to Processes
9. New nanoscale process created by UCSB scientists will help computers run faster and more efficiently
10. DSM and Crucell Announce Another Key Achievement for PER.C6(R) Technology; Scale Up of High-Titer Fed-Batch Process to 250 Liters
11. Process Safety and Thermal Hazard Analysis Fall Webinar Series presented by METTLER TOLEDO
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... June 27, 2016 , ... Rolf K. Hoffmann, ... faculty of the University of North Carolina Kenan-Flagler Business School effective ... at UNC Kenan-Flagler, with a focus on the school’s international efforts, leading classes ...
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/24/2016)... ... , ... Researchers at the Universita Politecnica delle Marche in Ancona combed medical ... mesothelioma. Their findings are the subject of a new article on the Surviving Mesothelioma ... in the blood, lung fluid or tissue of mesothelioma patients that can help point ...
Breaking Biology Technology:
(Date:4/26/2016)... LONDON , April 26, 2016 ... a product subsidiary of Infosys (NYSE: ... to integrate the Onegini mobile security platform with ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration will ... to access and transact across channels. Using this ...
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/15/2016)... -- Research and Markets has announced the ...  report to their offering.  ,      ... gait biometrics market is expected to grow at ... Gait analysis generates multiple variables such ... compute factors that are not or cannot be ...
Breaking Biology News(10 mins):