Navigation Links
New nanostructure-based process will streamline production of magnetic materials

AMHERST, Mass. Scientists at the University of Massachusetts Amherst report that for the first time they have designed a much simpler method of preparing ordered magnetic materials than ever before, by coupling magnetic properties to nanostructure formation at low temperatures.

The innovative process allows them to create room-temperature ferromagnetic materials that are stable for long periods more effectively and with fewer steps than more complicated existing methods. The approach is outlined by UMass Amherst polymer scientist Gregory Tew and colleagues in the Sept. 27 issue of Nature Communications.

Tew explains that his group's signature improvement is a one-step method to generate ordered magnetic materials based on cobalt nanostructures by encoding a block copolymer with the appropriate chemical information to self-organize into nanoscopic domains. Block copolymers are made up of two or more single-polymer subunits linked by covalent chemical bonds.

The new process delivers magnetic properties to materials upon heating the sample once to a relatively low temperature, about 390 degrees (200 degrees Celsius), which transforms them into room-temperature, fully magnetic materials. Most previous processes required either much higher temperatures or more process steps to achieve the same result, which increases costs, Tew says.

He adds, "The small cobalt particles should not be magnetic at room temperature because they are too small. However, the block copolymer's nanostructure confines them locally which apparently induces stronger magnetic interactions among the particles, yielding room-temperature ferromagnetic materials that have many practical applications."

"Until now, it has not been possible to produce ordered, magnetic materials via block copolymers in a simple process," Tew says. "Current methods require multiple steps just to generate the ordered magnetic materials. They also have limited effectiveness because they may not retain the fidelity of the ordered block copolymer, they can't confine the magnetic materials to one domain of the block copolymer, or they just don't produce strongly magnetic materials. Our process answers all these limitations."

Magnetic materials are used in everything from memory storage devices in our phones and computers to the data strips on debit and credit cards. Tew and colleagues have discovered a way to build block copolymers with the necessary chemical information to self-organize into nanoscopic structures one millionth of a millimeter thin, or about 50,000 times thinner than the average human hair.

Earlier studies have demonstrated that block copolymers can be organized over relatively large areas. What makes the UMass Amherst research group's results so intriguing, Tew says, is the possible coupling of long-range organization with improved magnetic properties. This could translate into lower-cost development of new memory media, giant magneto-resistive devices and futuristic spintronic devices that might include "instant on" computers or computers that require much less power, he points out.

He adds, "Although work remains to be done before new data storage applications are enabled, for example making the magnets harder, our process is highly tunable and therefore amendable to incorporating different types of metal precursors. This result should be interesting to every scientist in nanotechnology because it shows conclusively that nano-confinement leds to completely new properties, in this case room temperature magnetic materials."

"Our work highlights the importance of learning how to control a material's nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room-temperature magnets."

"Our work highlights the importance of learning how to control a material's nanostructure. We show that the nanostructure is directly related to an important and practical outcome, that is, the ability to generate room temperature magnets." As part of this study, the UMass Amherst team also demonstrated that using a block copolymer or nanoscopic material results in a material that is magnetic at room temperature. By contrast, using a homopolymer, or unstructured material, leads only to far less useful non- or partial-magnetic materials.


Contact: Janet Lathrop
University of Massachusetts at Amherst

Related biology technology :

1. Bion Announces Approval of New U.S. Patent for Phosphorus Removal Process for Livestock Waste Environmental Treatment
2. Early-Bird Registration Ends this Week for 10th Annual Quality Excellence Conference: How Process Improvement Leaders Produce Profits in Recessions
3. Human Genome Sciences Announces Process Development and Manufacturing Alliance With Hospira
4. Researchers decode viral process that prepares cells for HIV infection
5. MonoSol Rx Granted Strategic US Patent for Thin Film Manufacturing Process
6. First 3-D processor runs at 1.4 Ghz on new architecture
7. Cyntellect Launches CellXpress(TM) System to Boost Productivity of Biopharmaceutical Process Development
8. Gores Legacy of Innovation Extends From Products to Processes
9. New nanoscale process created by UCSB scientists will help computers run faster and more efficiently
10. DSM and Crucell Announce Another Key Achievement for PER.C6(R) Technology; Scale Up of High-Titer Fed-Batch Process to 250 Liters
11. Process Safety and Thermal Hazard Analysis Fall Webinar Series presented by METTLER TOLEDO
Post Your Comments:
Related Image:
New nanostructure-based process will streamline production of magnetic materials
(Date:11/24/2015)... -- Cepheid (NASDAQ: CPHD ) today announced that ... and invited investors to participate via webcast. ... 1, 2015 at 11.00 a.m. Eastern Time --> ... 1, 2015 at 11.00 a.m. Eastern Time --> ... NY      Tuesday, December 1, 2015 at 11.00 ...
(Date:11/24/2015)... Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... on behalf of the Toronto Stock Exchange, confirms that ... are no corporate developments that would cause the recent ... --> --> About Aeterna Zentaris Inc. ... --> Aeterna Zentaris is a specialty biopharmaceutical ...
(Date:11/24/2015)... , November 24, 2015 SHPG ) announced ... in the Piper Jaffray 27 th Annual Healthcare Conference in ... 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). --> ... Financial Officer, will participate in the Piper Jaffray 27 th ... NY on Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 ...
(Date:11/24/2015)... ... 24, 2015 , ... In harsh industrial processes, the safety ... sensors can represent a weak spot where leaking process media is a possible ... housings , which are designed to tolerate extreme process conditions. They combine rugged ...
Breaking Biology Technology:
(Date:11/10/2015)... 10, 2015 About signature ... helps to identify and verify the identity of ... as the secure and accurate method of authentication ... particular individual because each individual,s signature is highly ... when dynamic signature of an individual is compared ...
(Date:11/9/2015)...  Synaptics Inc. (NASDAQ: SYNA ), the leading ... into the automotive market with a comprehensive and dedicated ... consumer electronics human interface innovation. Synaptics, industry-leading touch controllers, ... automotive industry and will be implemented in numerous locations ... , Japan , and ...
(Date:11/2/2015)...  SRI International has been awarded a contract of ... to the National Cancer Institute (NCI) PREVENT Cancer Program ... modern testing and support facilities, and analytical instrumentation to ... studies to evaluate potential cancer prevention drugs. ... Drug Development Program is an NCI-supported pipeline to bring ...
Breaking Biology News(10 mins):