Navigation Links
New nanoparticle vaccine is more effective but less expensive
Date:9/22/2007

Good news for public health: Bioengineering researchers from the EPFL in Lausanne, Switzerland, have developed and patented a nanoparticle that can deliver vaccines more effectively, with fewer side effects, and at a fraction of the cost of current vaccine technologies.

Described in an article appearing online September 16 in the journal Nature Biotechnology, the vaccine delivery platform is a deceptively simple combination of nanotechnology and chemistry that represents a huge advantage over current vaccine methods. This technology may make it possible to vaccinate against diseases like hepatitis and malaria with a single injection. And at an estimated cost of only a dollar a dose, this technology represents a real breakthrough for vaccine efforts in the developing world.

A vaccination is an injection of a non-virulent form of a pathogen or molecule from a pathogen (known as an antigen), to which the immune system responds, destroying and then developing a memory for the pathogen. Later, when a virulent form of the pathogen comes along, this memory kicks in and the intruder is quickly eradicated. Most vaccines protect against viruses or bacteria, but vaccine techniques are also being explored as a way to kill cancer cells.

Thanks to recent advances, an immune response can be triggered with just a single protein from a virus or bacterium. Recent research has also shown that the best way to get sustained immunity is to deliver an antigen directly to specialized immune cells known as dendritic cells (DCs).

This technique is not yet used clinically because there are two difficulties to overcome in targeting the DCs: first, there are not very many of these cells in the skin or muscle, where injections are usually made, so obtaining an adequate immune response with a single injection is difficult; and second, activating the DCs requires co-delivering a danger signal of some sort, otherwise the immune system will just ignore it. Current approaches mimic bacterial molecules already known to the immune system, but this can cause side effects or even be toxic.

EPFL professors Jeff Hubbell and Melody Swartz and PhD student Sai Reddy have engineered nanoparticles that completely overcome these limitations. At a mere 25 nanometers, these particles are so tiny that once injected, they flow through the skins extracellular matrix, making a beeline to the lymph nodes. Within minutes, theyve reached a concentration of DCs thousands of times greater than in the skin. The immune response can then be extremely strong and effective.

In addition, the EPFL team has also engineered a special chemical coating for the nanoparticles that mimics the surface chemistry of a bacterial cell wall. The DCs dont recognize this as a specific invader, but do know that its something foreign, and so a low-level, generic immune reaction known as complement is triggered. This results in a particularly potent immune response without the risk of unpleasant or toxic side effects.

People have been exploring nanoparticles for a while, says Hubbell. Our ideas -- to activate complement as a danger signal, and to exploit the slow interstitial flow towards the lymph nodes are completely new. But it meant that our particles had to be much smaller than anything currently being developed. No other labs have managed to engineer so many levels of functionality into nanoparticles that are smaller than biologically occurring particles, he adds. The beauty of it is that once we have developed the recipe, any lab can make them.

Cost and logistics are important factors, especially for use in developing countries. Unlike other nanoparticle vaccine technologies that degrade in water and thus require expensive drying and handling procedures, the EPFL teams nanoparticles wont degrade until they are in the body. They are in liquid form and dont require refrigeration, so preparation and handling costs are reduced, and they are easy to transport.

The group is collaborating with the Swiss Tropical Institute in Basel to determine the strength and duration of the immune response in the context of a nanoparticle malaria vaccine. Toxicity studies are also in the works. Swartz says that the team is also planning to use this technique to target cancer cells.

If, as we hope, this vaccine technique can confer sustained immunity with a single injection for around a dollar a dose, without toxic side effects, it could have a real impact on public health, in the developing world as well as right here at home, says Swartz. More study is required to achieve these goals, she adds, but we have every reason to believe this technique could be in use within five years.


'/>"/>

Contact: Mary Parlange
mary.parlange@epfl.ch
41-216-916-113
Ecole Polytechnique Fd rale de Lausanne
Source:Eurekalert

Related biology technology :

1. New Mexico firm to make flu vaccine at Wisconsin BioManufacturing facility
2. Studies Offer New Insight into HIV Vaccine Development
3. DirectPrep 96 Miniprep System for cost-effective, high-throughput plasmid DNA purification
4. The Fastest, Simplest, and Most Effective Way to Remove DNA Contamination
5. Merge offshoring jobs to "more cost-effective" workforce
6. Midwest is cost-effective for startup biotech companies
7. Video games promoted as effective health-care training
8. Business Intelligence and Process Effectiveness Processes
9. Tapeworms Chemical Trick Could Make Drugs More Effective
10. Symposium To Explore Information Technologys Impact on Improving Quality, Cost Effectiveness of Healthcare
11. Quantity versus Quality: Effective E-Marketing Relationships
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/20/2016)... Minneapolis, MN (PRWEB) , ... May 20, 2016 , ... ... and consumer goods companies, today announced its official 25th anniversary of the business. “We ... we are so grateful to our customers for the privilege and honor of serving ...
(Date:5/20/2016)... ... May 20, 2016 , ... The recent recall by ... reported by Food Safety News on May 12, 2016(1), demonstrates the need for faster ... CEO of Baltimore-based biotech firm, PathSensors, Inc. , PathSensor’s latest solution ...
(Date:5/19/2016)... , May 19, 2016  AdvancedFlow Systems Inc. ... (AGI), based out of Maple Ridge, ... Ltd. to its existing portfolio of contract manufacturing ... AFS along with its sister companies Surround Technologies ... vertically integrated industrial group that specializes in providing ...
(Date:5/19/2016)... Kansas City, KS (PRWEB) , ... May 19, ... ... and biomarker contract research organization (CRO) has welcomed Abu Siddiqui as Director, Large ... designing, managing and executing biologics, vaccine and translational biomarker discovery studies for preclinical ...
Breaking Biology Technology:
(Date:5/16/2016)... , May 16, 2016   EyeLock LLC ... today announced the opening of an IoT Center of ... strengthen and expand the development of embedded iris biometric ... unprecedented level of convenience and security with unmatched biometric ... one,s identity aside from DNA. EyeLock,s platform uses video ...
(Date:5/9/2016)... Elevay is currently known as ... for high net worth professionals seeking travel for work ... world, there is still no substitute for a face-to-face ... your deal with a firm handshake. This is why ... of citizenship via investment programs like those offered by ...
(Date:4/28/2016)... India , April 28, 2016 ... Infosys (NYSE: INFY ), and Samsung SDS, a ... that will provide end customers with a more secure, ... services.      (Logo: http://photos.prnewswire.com/prnh/20130122/589162 ) , ... services, but it also plays a fundamental part in enabling ...
Breaking Biology News(10 mins):