Navigation Links
New nanomedicine resolves inflammation, promotes tissue healing

NEW YORK, NY (March 18, 2013) A multicenter team of researchers, including scientists at Columbia University Medical Center (CUMC), Brigham and Women's Hospital (BWH), Mount Sinai School of Medicine, and Massachusetts Institute of Technology, has developed biodegradable nanoparticles that are capable of delivering inflammation-resolving drugs to sites of tissue injury. The nanoparticles, which were successfully tested in mice, have potential for the treatment of a wide array of diseases characterized by excessive inflammation, such as atherosclerosis. The study was published today in the online edition of the Proceedings of the National Academy of Sciences.

A key way in which the body protects itself against infection or injury is through acute inflammation. Ideally, this response first promotes the clearance of pathogens or damaged tissue; then, through a process called inflammation resolution, it clears cellular debris and inflammatory mediators and restores the tissue to its normal state. However, in many conditions, including heart disease, arthritis, and neurodegenerative diseases, the inflammatory process never resolves, leading to tissue damage.

"A variety of medications can be used to control inflammation. Such treatments, however, usually have significant side effects and dampen the positive aspects of the inflammatory response," said co-senior author Ira Tabas, MD, PhD, the Richard J. Stock Professor, Department of Medicine, and professor of Pathology & Cell Biology (in Physiology and Cellular Biophysics) at CUMC. The other co-senior author is Omid Farokhzad, MD, Associate Professor of Anesthesiology and Director of Laboratory of Nanomedicine and Biomaterials at Brigham and Women's Hospital (BWH).

To overcome these obstacles, the researchers incorporated two advances. First, based on an idea from co-lead author Gabrielle Fredman, PhD, a postdoctoral fellow at CUMC, they took advantage of a 24-amino-acid peptide, Ac2-26, which is derived from a naturally occurring protein mediator of inflammation resolution called annexin A1. Second, rather than simply inject the "naked" peptide into injured mice, they packaged the peptide into nanoparticles, designed by the BWH group, that are able to target drugs to sites of tissue injury. The nanoparticles were given this ability through the addition of two components: one that gives them stealthlike properties, enabling them to avoid detection and clearance by white blood cells and the liver; and a second that gives them the ability to target collagen IV, a protein found at sites of tissue injury.

Each nanoparticle is less than 100 nanometers in diameter, or 1/100,000th the diameter of a human hair.

The nanoparticles were tested in mice with peritonitis (inflammation of the peritoneum, the thin tissue that lines the inner wall of the abdomen) or hind-limb ischemia-reperfusion injury (tissue damage caused when blood supply returns to tissue after a period of ischemia, or lack of oxygen). In the mice with peritonitis, intravenous administration of the Ac2-26-containing nanoparticles was significantly more effective at limiting recruitment of neutrophils (a type of inflammatory white blood cell) and at increasing the resolution of inflammation than was intravenous administration of naked Ac2-26. In mice with reperfusion injury, the nanoparticles reduced tissue damage in comparison with either of two types of control nanoparticles: those with a peptide in which the 24 amino acids were scrambled to render it biologically inactive and Ac2-26 nanoparticles without the collagen IV-targeting component.

"These targeted polymeric nanoparticles are capable at very small doses of stopping neutrophils, the most abundant form of white blood cells, from infiltrating sites of disease or injury," said co-lead author Nazila Kamaly, PhD, a postdoctoral fellow at BWH. "This action stops the neutrophils from secreting further signaling molecules that can lead to a constant hyper-inflammatory state and further disease complications."

"The beauty of this approach is that, unlike many other anti-inflammatory approaches, it takes advantage of nature's own design for preventing inflammation-induced damage, which does not compromise host defense and promotes tissue repair," said Dr. Tabas.

While the nanoparticles do spread to tissues throughout the body, they tend to concentrate in areas of inflammation. "In theory, this should allow physicians to use smaller-than-usual doses of medications and reduce unwanted side effects," said Dr. Fredman.

The team is currently designing nanoparticles for the treatment of atherosclerosis. Preliminary studies show that the nanoparticles are capable of targeting atherosclerotic plaques.

The authors have filed a patent for targeted polymeric inflammation-resolving nanoparticles to treat a variety of chronic inflammatory diseases, including atherosclerosis, autoimmune disease, type 2 diabetes, and Alzheimer's disease.


Contact: Karin Eskenazi
Columbia University Medical Center

Related biology technology :

1. First targeted and programmable nanomedicine to show clinical antitumor effects published
2. Researchers pioneer worlds first HIV/AIDS nanomedicines
3. Clearing up inflammation with pro-resolving nanomedicines
4. Zyngenia, Inc. Promotes Chief Scientific Officer and Hires Chief Business Officer
5. Inovio Pharmaceuticals Promotes Niranjan Sardesai to Chief Operating Officer
6. BioSpace Promotes the Northeast Corridors Life Science Industry
7. Intellitech Announces New Micro Pump Promotes Rapid Growth of Emerging BioTech
8. New Mobile Solution from FreshLoc Promotes Safety and Prevents Non Compliance
9. AMRI Promotes Takeshi Yura, Ph.D., to Vice President of Discovery and Development Services, Asia
10. New method for producing precursor of neurons, bone and other important tissues from stem cells
11. BioStorage Technologies Partners with Susan G. Komen for the Cure Tissue Bank at IU Simon Cancer Center to Raise Money and Awareness for Breast Cancer Research
Post Your Comments:
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and ... and the 6000i models are higher end machines that use the more unconventional z-dimension ... light beam from the bottom of the cuvette holder. , FireflySci has developed ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... of its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with ... in this eBook by providing practical tips, tools, and strategies for clinical researchers. ...
(Date:6/23/2016)... June 23, 2016   Boston Biomedical , ... compounds designed to target cancer stemness pathways, announced ... granted Orphan Drug Designation from the U.S. Food ... gastric cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin ... to inhibit cancer stemness pathways by targeting STAT3, ...
Breaking Biology Technology:
(Date:6/2/2016)... , June 2, 2016 The Department ... has awarded the 44 million US Dollar project, for the ... Vehicle Plates including Personalization, Enrolment, and IT Infrastructure , ... in the production and implementation of Identity Management Solutions. Numerous ... however Decatur was selected for the ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of the medical ... premium product recently added to the range of products distributed by Ampronix. ... ... ... Ampronix News ...
(Date:5/9/2016)... 2016 Elevay is currently known ... freedom for high net worth professionals seeking travel for ... connected world, there is still no substitute for a ... sealing your deal with a firm handshake. This is ... advantage of citizenship via investment programs like those offered ...
Breaking Biology News(10 mins):