Navigation Links
New material harvests energy from water vapor
Date:1/10/2013

CAMBRIDGE, MA -- MIT engineers have created a new polymer film that can generate electricity by drawing on a ubiquitous source: water vapor.

The new material changes its shape after absorbing tiny amounts of evaporated water, allowing it to repeatedly curl up and down. Harnessing this continuous motion could drive robotic limbs or generate enough electricity to power micro- and nanoelectronic devices, such as environmental sensors.

"With a sensor powered by a battery, you have to replace it periodically. If you have this device, you can harvest energy from the environment so you don't have to replace it very often," says Mingming Ma, a postdoc at MIT's David H. Koch Institute for Integrative Cancer Research and lead author of a paper describing the new material in the Jan. 11 issue of Science.

"We are very excited about this new material, and we expect as we achieve higher efficiency in converting mechanical energy into electricity, this material will find even broader applications," says Robert Langer, the David H. Koch Institute Professor at MIT and senior author of the paper. Those potential applications include large-scale, water-vapor-powered generators, or smaller generators to power wearable electronics.

Other authors of the Science paper are Koch Institute postdoc Liang Guo and Daniel Anderson, the Samuel A. Goldblith Associate Professor of Chemical Engineering and a member of the Koch Institute and MIT's Institute for Medical Engineering and Science.

Harvesting energy

The new film is made from an interlocking network of two different polymers. One of the polymers, polypyrrole, forms a hard but flexible matrix that provides structural support. The other polymer, polyol-borate, is a soft gel that swells when it absorbs water.

Previous efforts to make water-responsive films have used only polypyrrole, which shows a much weaker response on its own. "By incorporating the two different kinds of polymers, you can generate a much bigger displacement, as well as a stronger force," Guo says.

The film harvests energy found in the water gradient between dry and water-rich environments. When the 20-micrometer-thick film lies on a surface that contains even a small amount of moisture, the bottom layer absorbs evaporated water, forcing the film to curl away from the surface. Once the bottom of the film is exposed to air, it quickly releases the moisture, somersaults forward, and starts to curl up again. As this cycle is repeated, the continuous motion converts the chemical energy of the water gradient into mechanical energy.

Such films could act as either actuators (a type of motor) or generators. As an actuator, the material can be surprisingly powerful: The researchers demonstrated that a 25-milligram film can lift a load of glass slides 380 times its own weight, or transport a load of silver wires 10 times its own weight, by working as a potent water-powered "mini tractor." Using only water as an energy source, this film could replace the electricity-powered actuators now used to control small robotic limbs.

"It doesn't need a lot of water," Ma says. "A very small amount of moisture would be enough."

Generating electricity

The mechanical energy generated by the material can also be converted into electricity by coupling the polymer film with a piezoelectric material, which converts mechanical stress to an electric charge. This system can generate an average power of 5.6 nanowatts, which can be stored in capacitors to power ultra-low-power microelectronic devices, such as temperature and humidity sensors.

If used to generate electricity on a larger scale, the film could harvest energy from the environment for example, while placed above a lake or river. Or, it could be attached to clothing, where the mere evaporation of sweat could fuel devices such as physiological monitoring sensors. "You could be running or exercising and generating power," Guo says.

On a smaller scale, the film could power microelectricalmechanical systems (MEMS), including environmental sensors, or even smaller devices, such as nanoelectronics. The researchers are now working to improve the efficiency of the conversion of mechanical energy to electrical energy, which could allow smaller films to power larger devices.


'/>"/>

Contact: Sarah McDonnell
s_mcd@mit.edu
617-253-8923
Massachusetts Institute of Technology
Source:Eurekalert

Related biology technology :

1. NASA develops super-black material that absorbs light across multiple wavelength bands
2. New metamaterial allows transmission gain while retaining negative refraction property
3. Multidisciplinary team of researchers develop world’s lightest material
4. Microfabrication breakthrough could set piezoelectric material applications in motion
5. Transparent material breakthrough
6. BioRestorative Therapies Signs Material Manufacturing Agreement With University of Utah
7. Nanowiggles: Scientists discover graphene nanomaterials with tunable functionality in electronics
8. New material for thermonuclear fusion reactors
9. Nature Materials: Quick-cooking nanomaterials in microwave to make tomorrows air conditioners
10. Berkeley Lab seeks to help US assert scientific leadership in critical materials
11. Nature Materials study: Graphene invisible to water
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/18/2017)... ... , ... Thirty-six startup companies in University City and Center City have been ... Economic Development in 2016 as part of the Keystone Innovation Zone (KIZ) Tax Credit ... and represent the highest number of awards to the largest number of companies in ...
(Date:1/18/2017)... Jan. 18, 2017  Caris Life Sciences, a ... Foundation, the largest private funder of pancreatic cancer ... evaluating the impact of immunotherapy in the treatment ... enrollment services to identify potential trial candidates based ... treating physicians and study investigators. The Lustgarten Foundation ...
(Date:1/17/2017)... ... January 17, 2017 , ... LGC Maine Standards ... VALIDATE® SP2 calibration verification / linearity test kit. VALIDATE® SP2 evaluates Albumin, C-reactive ... SP2 kit is prepared using the CLSI recommended “equal delta” method for linearity ...
(Date:1/17/2017)... 2017  An international team of researchers from ... Boniface Hospital Albrechtsen Research Centre/University of Manitoba have ... health need affecting nearly one in 15 Americans. ... their results identify small molecule drugs with neuroprotective ... injury in animal models of metabolic, chemical and ...
Breaking Biology Technology:
(Date:1/4/2017)... , Jan. 4, 2017  CES 2017 – ... sensor technology, today announced the launch of two ... systems, the highly-accurate biometric sensor modules that incorporate ... technology, experience and expertise. The two new designs ... specifically for hearables, and Benchmark BW2.0, a 2-LED ...
(Date:12/22/2016)... 2016 SuperCom (NASDAQ:   ... the e-Government, Public Safety, HealthCare, and Finance sectors announced today that ... selected to implement and deploy a community-based supportive services program to ... , further expanding its presence in the state. ... This new program, which is ...
(Date:12/19/2016)... TORONTO , 19 de diciembre de 2016  Mosaic Biomedicals ... el desarrollo acelerado de MSC-1, un anticuerpo humanizado que se espera ... en 2017, con múltiples sitios previstos a lo largo de Europa ... MSC-1 ... factor inhibidor de leucemia (LIF), una citoquina pleiotrópica que se sobreexpresa ...
Breaking Biology News(10 mins):