Navigation Links
New material for thermonuclear fusion reactors

This release is available in Spanish.

Scientists at Universidad Carlos III de Madrid, Oxford University and the University of Michigan have joined efforts to develop new materials for thermonuclear fusion reactors. Their research focuses on characterization of oxide dispersion-strengthened, reduced-activation steel for the reactor structure.

Thermonuclear fusion promises to be a possible solution to the current energy crisis. It is produced when two atomic nuclei of light elements combine to produce heavier elements, which give off a huge quantity of energy. So that this reaction can occur, it is necessary to supply an enormous amount of energy, so that temperatures of many millions of degrees can be reached, allowing the nuclei to come close enough to overcome their natural repulsion and become condensed in a plasma state. "This plasma, which reaches temperatures near that of the stars, around 100 million degrees, does not touch the walls of the reactors because they would melt," explained one of the project researchers, Vanessa de Castro, from the UC3M Physics Department. In order to confine the plasma, it is confined within the reactor by the magnetic fields. "Even so the walls must resist some very high temperatures as well as the effects of the irradiation from the neutrons from the reaction, for which we have to produce new materials that can withstand these extreme conditions," the Professor remarked.

The ITER project (under construction) and its successor, DEMO (scheduled for 2035) propose development of fusion reactors that are economically viable. This work depends on, among other things, the development of these new structural materials capable of withstanding damage by irradiation and elevated temperatures resulting from the fusion reaction. The scientific community has begun to develop new reduced - activation material for use in these reactors, but it is still not known if some of them will be viable under such hostile conditions. Along these lines, one of the most important candidates is oxide dispersion-strengthened, reduced-activation ferrite steel, called ODS steels.

The mechanic behavior of the ODS steels depends enormously on their microstructure, which until now has not been rigorously controlled. Until recently, studies on the microstructure of these steels have been on the micrometric scale. However, the nanometric scale is more relevant in understanding the phenomena that occur under irradiation. "We are now using our knowledge in nuclear structural materials and in advanced techniques of nanoanalysis to characterize diverse new generation ODS steels on the nanonmetric scale," noted the researchers, who have added nanometric particles to these steels (between 1 and 50 nm), which help to improve the mechanical properties and increase their resistance. The results of the research have been recently published in a special number of the journal Materials Science and Technology dedicated to the atomic scale characterization of steels.

The characterization of these materials is carried out using nanometric scale techniques. For example, with a transmission electron microscope, particles can be seen which are added to the material, even the smallest one of a nanometer (one millionth of millimeter). Because of this the following can be studied: if the distribution of the particles is optimum, its chemical composition, or if by changing it, better material is obtained or if interaction of these particles with the defects produced in the material is improved. "From there we extract the information that allows us to explain why material behaves in one way or another, because the fact that it has bad mechanical properties could be related to the particles not being well-distributed", ESTRUMAT's Professor de Castro, pointed out. The objective of this Advanced Structural Materials consortium, composed of five research groups from four universities and a Madrid Region research institute, is to provide a framework of scientific-technological activity in the area of advanced materials structures for applications in engineering.

This research, funded by the Ministry of Science and Innovation, is focused on the study of oxide nanoparticles which are present in these steels, and the damage caused by radiation of these materials. The analyses carried out up to now show, for example, that the particles have a core-shell type structure consistent in an yttrium(Y) -rich nucleus surrounded by a chrome (Cr)-enriched area.


Contact: Ana Herrera
Carlos III University of Madrid

Related biology technology :

1. Zeus Webinar: Bioabsorbable Polymers as Biomaterials
2. NPL to create encyclopedia for space nanomaterials
3. New carbon material shows promise of storing large quantities of renewable electrical energy
4. New graphene-based material clarifies graphite oxide chemistry
5. Nomad Bioscience: New Plant Biotechnology Company Founded to Focus on Biomaterials and Biopharmaceuticals
6. Nanoscale carbon materials research wins the 2008 Julius Springer Prize for Applied Physics
7. NSF awards 14 materials research science and engineering centers
8. New knowledge about thermoelectric materials could give better energy efficiency
9. A new material could act as a nanofridge for microchips
10. SAFC Hitech(TM) Expands Electronic Materials Portfolio With the Introduction of Scintillation Crystal Growth Halides
11. New solar energy material captures every color of the rainbow
Post Your Comments:
Related Image:
New material for thermonuclear fusion reactors
(Date:6/23/2016)... A person commits a crime, and the detective ... the criminal down. An outbreak of foodborne illness ... (FDA) uses DNA evidence to track down the bacteria that ... It,s not. The FDA has increasingly used a complex, cutting-edge ... illnesses. Put as simply as possible, whole genome sequencing is ...
(Date:6/23/2016)... FRANCISCO , June 23, 2016   EpiBiome ... has secured $1 million in debt financing from Silicon ... ramp up automation and to advance its drug development ... its new facility. "SVB has been an ... beyond the services a traditional bank would provide," said ...
(Date:6/23/2016)... 23, 2016  Blueprint Bio, a company dedicated to ... medical community, has closed its Series A funding round, ... "We have received a commitment from Forentis ... need to meet our current goals," stated Matthew ... runway to complete validation on the current projects in ...
(Date:6/23/2016)... ... June 23, 2016 , ... Velocity Products, a division of ... and optimized exclusively for Okuma CNC machining centers at The International Manufacturing Technology ... among several companies with expertise in toolholding, cutting tools, machining dynamics and distribution, ...
Breaking Biology Technology:
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing ...  3D medical LCD display is the latest premium product recently added to the range ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a ... the MegaMatcher Automated Biometric Identification System (ABIS) ... large-scale multi-biometric projects. MegaMatcher ABIS can process multiple ... using any combination of fingerprint, face or iris ... MegaMatcher SDK and MegaMatcher Accelerator , ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
Breaking Biology News(10 mins):