Navigation Links
New 'magnetic yeast' marks step toward harnessing Nature's magnetic capabilities
Date:2/28/2012

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School have developed a method for inducing magnetic sensitivity in an organism that is not naturally magneticyeast. Their technology could potentially be used to magnetize a variety of different cell types in medical, industrial and research applications. The research findings appear in today's issue of PLoS Biology.

Magnetic fields are everywhere, but few organisms can sense them. Those that do, such as birds and butterflies, use magnetic sensitivity as a kind of natural global positioning system to guide them along migratory routes. How these few magnetically aware organisms gain their magnetism remains one of biology's unsolved mysteries.

Researchers Pamela Silver, Ph.D., and Keiji Nishida, Ph.D., were able to imbue yeast with similar properties. Silver, the principal investigator, is a founding core faculty member at the Wyss Institute and a professor of Biochemistry and Systems Biology at Harvard Medical School (HMS). Nishida is a research fellow in Systems Biology at HMS.

"Magnetism in nature is a unique and mysterious biological function that very few living systems exploit," said Silver. "So while magnetic yeast may not sound like a serious scientific breakthrough, it's actually a highly significant first step toward harnessing this natural phenomenon and applying it to all sorts of important practical purposes."

The presence of iron can cause magnetism, but most cells, if exposed to this common metal, hide it away in sealed-off cavities where it cannot have an effect. Silver and Nishida were able to block expression of the protein that causes the iron sequestration, allowing the iron to circulate freely throughout the yeast cell. In this way, they created enough magnetic sensitivity in the cell to cause it to migrate toward an external magnet.

The researchers also found a gene that correlates with magnetism by instructing the production of a critical protein that can dial up magnetism. They then enhanced the magnetic sensitivity even further through interaction with a second protein that regulates cell metabolism. Since the same metabolic protein functions similarly in cells ranging from simple yeast to more advancedeven humancells, the new method could potentially be applied to a much wider range of organisms.

Silver notes that in an industrial setting, magnetization could be extremely helpful as a means of targeting and isolating specific cells. Contaminated cells could be pulled out and disposed of during the processing of biological materials, and cells that are critical to a certain manufacturing process could be isolated and put to use. Magnetic cells could also be used to interact with non-living machinery. For example, magnetism could be used in tissue engineering to guide cells to layer themselves on a scaffold in a specific way. New therapies might one day be created in which cells are engineered to respond to a magnetic field by growing or healing, and implanted magnetic stem cells might one day be tracked with magnetic resonance imaging.

"This work shows how design principles from one type of cell can be harnessed using synthetic biology to transfer novel functionalities to another, which is a core approach driving the field of biologically inspired engineering," said Wyss Institute Founding Director Donald Ingber, M.D. Ph.D. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Children's Hospital Boston, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences. "The ability to control cells magnetically will also synergize with many other technologies in the pipeline at the Wyss Institute that rely on use of magnetic fields to control cell functions remotely, or to isolate rare cells from biological fluids."


'/>"/>
Contact: Twig Mowatt
twig.mowatt@wyss.harvard.edu
617-432-1547
Wyss Institute for Biologically Inspired Engineering at Harvard
Source:Eurekalert

Related biology technology :

1. The worlds smallest magnetic data storage unit
2. Magnetic actuation enables nanoscale thermal analysis
3. Graphene reveals its magnetic personality
4. Quantum computing has applications in magnetic imaging, say Pitt researchers
5. New magnetic-field-sensitive alloy could find use in novel micromechanical devices
6. Magnetic nanoswitch for thermoelectric voltages
7. Using new technique, scientists uncover a delicate magnetic balance for superconductivity
8. New nanostructure-based process will streamline production of magnetic materials
9. Mobile phone electromagnetic field affects local glucose metabolism in the human brain
10. Innovative nanoparticle purification system uses magnetic fields
11. The art of magnetic writing
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only ... Center and will showcase its product’s latest features from June 26 to June ... scientific poster on Disrupting Clinical Trials in The Cloud during the conference. ...
Breaking Biology Technology:
(Date:5/16/2016)... 16, 2016   EyeLock LLC , a market ... opening of an IoT Center of Excellence in ... the development of embedded iris biometric applications. ... convenience and security with unmatched biometric accuracy, making it ... from DNA. EyeLock,s platform uses video technology to deliver ...
(Date:5/9/2016)... UAE, May 9, 2016 Elevay ... comes to expanding freedom for high net worth professionals ... in today,s globally connected world, there is still no ... could ever duplicate sealing your deal with a firm ... passports by taking advantage of citizenship via investment programs ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
Breaking Biology News(10 mins):