Navigation Links
New kind of optical fiber developed
Date:2/25/2011

A team of scientists led by John Badding, a professor of chemistry at Penn State University, has developed the very first optical fiber made with a core of zinc selenide -- a light-yellow compound that can be used as a semiconductor. The new class of optical fiber, which allows for a more effective and liberal manipulation of light, promises to open the door to more versatile laser-radar technology. Such technology could be applied to the development of improved surgical and medical lasers, better countermeasure lasers used by the military, and superior environment-sensing lasers such as those used to measure pollutants and to detect the dissemination of bioterrorist chemical agents. The team's research will be published in the journal Advanced Materials.

"It has become almost a clich to say that optical fibers are the cornerstone of the modern information age," said Badding. "These long, thin fibers, which are three times as thick as a human hair, can transmit over a terabyte -- the equivalent of 250 DVDs -- of information per second. Still, there always are ways to improve on existing technology." Badding explained that optical-fiber technology always has been limited by the use of a glass core. "Glass has a haphazard arrangement of atoms," Badding said. "In contrast, a crystalline substance like zinc selenide is highly ordered. That order allows light to be transported over longer wavelengths, specifically those in the mid-infrared."

Unlike silica glass, which traditionally is used in optical fibers, zinc selenide is a compound semiconductor. "We've known for a long time that zinc selenide is a useful compound, capable of manipulating light in ways that silica can't," Badding said. "The trick was to get this compound into a fiber structure, something that had never been done before." Using an innovative high-pressure chemical-deposition technique developed by Justin Sparks, a graduate student in the Department of Chemistry, Badding and his team deposited zinc selenide waveguiding cores inside of silica glass capillaries to form the new class of optical fibers. "The high-pressure deposition is unique in allowing formation of such long, thin, zinc selenide fiber cores in a very confined space," Badding said.

The scientists found that the optical fibers made of zinc selenide could be useful in two ways. First, they observed that the new fibers were more efficient at converting light from one color to another. "When traditional optical fibers are used for signs, displays, and art, it's not always possible to get the colors you want," Badding explained. "Zinc selenide, using a process called nonlinear frequency conversion, is more capable of changing colors."

Second, as Badding and his team expected, they found that the new class of fiber provided more versatility not just in the visible spectrum, but also in the infrared -- electromagnetic radiation with wavelengths longer than those of visible light. Existing optical-fiber technology is inefficient at transmitting infrared light. However, the zinc selenide optical fibers that Badding's team developed are able to transmit the longer wavelengths of infrared light. "Exploiting these wavelengths is exciting because it represents a step toward making fibers that can serve as infrared lasers," Badding explained. "For example, the military currently uses laser-radar technology that can handle the near-infrared, or 2 to 2.5-micron range. A device capable of handling the mid-infrared, or over 5-micron range would be more accurate. The fibers we created can transmit wavelengths of up to 15 microns."

Badding also explained that the detection of pollutants and environmental toxins could be yet another application of better laser-radar technology capable of interacting with light of longer wavelengths. "Different molecules absorb light of different wavelengths; for example, water absorbs, or stops, light at the wavelengths of 2.6 microns," Badding said. "But the molecules of certain pollutants or other toxic substances may absorb light of much longer wavelengths. If we can transport light over longer wavelengths through the atmosphere, we can see what substances are out there much more clearly." In addition, Badding mentioned that zinc selenide optical fibers also may open new avenues of research that could improve laser-assisted surgical techniques, such as corrective eye surgery.


'/>"/>

Contact: Barbara Kennedy
science@psu.edu
814-863-4682
Penn State
Source:Eurekalert

Related biology technology :

1. Boston College receives W.M. Keck Foundation funding for nanoscale optical microscope
2. New materials may bring advanced optical technologies, cloaking
3. Iowa State, Ames Lab physicist developing, improving designer optical materials
4. All-optical transistor
5. Essilor to Acquire 50% of Shamir Optical
6. Optical chip enables new approach to quantum computing
7. An optical traffic cop for rapid communication
8. Small optical force can budge nanoscale objects
9. Reportlinker Adds Worldwide Optical, Transmission TEM, and Scanning SEM Electron Microscope Market Shares, Strategies, and Forecasts, 2009 to 2015
10. New nanolaser key to future optical computers and technologies
11. Shamir Optical Industry Ltd. Announces Availability of Its Annual Report on Form 20-F Through Its Website
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/10/2016)... 10, 2016  Matchbook, Inc., a company specializing ... biotech companies, announced today the appointment of ... Jim brings nearly 25 years of experience in ... spent nearly two decades in executive level roles ... at Genzyme and, most recently headed global logistics ...
(Date:2/10/2016)... ... 2016 , ... SonaCare Medical, LLC reports the introduction of ... monitoring. The inaugural launch of this new technology occurred over the course of ... to a HIFU technical expert at SonaCare Medical headquarters. , Sonalink allows ...
(Date:2/10/2016)... (PRWEB) , ... February 10, 2016 , ... Cenna Bioscience ... for the treatment of Alzheimer’s disease, announced today it has been selected to present ... at the Breakers in Palm Beach, Florida. The purpose of the Forum is ...
(Date:2/9/2016)... ... 08, 2016 , ... Date and time: March 1, 2016, ... Pennsylvania Biotechnology Center of Bucks County, 3805 Old Easton Road, Doylestown, PA 18902. ... hold an open house for participants to learn about a new Master of ...
Breaking Biology Technology:
(Date:2/4/2016)... , Feb. 4, 2016 The field ... one of the most popular hubs of the ... and other huge studies of human microbiota, have ... few years, the microbiome space has literally exploded ... research. This report focuses on biomedical aspects ...
(Date:2/3/2016)... 3, 2016 --> ... report "Automated Fingerprint Identification System Market by Component (Hardware ... (Banking & Finance, Government, Healthcare, and Transportation) and Geography ... market is expected to be worth USD 8.49 Billion ... 2015 and 2020. The transformation and technology evolution from ...
(Date:2/3/2016)... http://www.researchandmarkets.com/research/d8zjcd/emotion_detection ) ... "Emotion Detection and Recognition Market by Technology ... Tools (Facial Expression, Voice Recognition and Others), ... Global forecast to 2020" report to ... ) has announced the addition of the ...
Breaking Biology News(10 mins):