Navigation Links
New insights into cellular reprogramming revealed by genomic analysis
Date:5/28/2008

The ability to drive somatic, or fully differentiated, human cells back to a pluripotent or stem cell state would overcome many of the significant scientific and social challenges to the use of embryo-derived stem cells and help realize the promise of regenerative medicine. Recent research with mouse and human cells has demonstrated that such a transformation (reprogramming) is possible, although the current process is inefficient and, when it does work, poorly understood. But now, thanks to the application of powerful new integrative genomic tools, a cross-disciplinary research team from Harvard University, Whitehead Institute, and the Broad Institute of MIT and Harvard has uncovered significant new information about the molecular changes that underlie the direct reprogramming process. Their findings are published online in the journal Nature.

We used a genomic approach to identify key obstacles to the reprogramming process and to understand why most cells fail to reprogram, said Alexander Meissner, assistant professor at Harvard Universitys Department of Stem Cell and Regenerative Biology and associate member of the Broad Institute, who led the multi-institutional effort. Currently, reprogramming requires infecting somatic cells with engineered viruses. This approach may be unsuitable for generating stem cells that can be used in regenerative medicine. Our work provides critical insights that might ultimately lead to a more refined approach.

Previous work had demonstrated that four transcription factors proteins that mediate whether their target genes are turned on or off could drive fully differentiated cells, such as skin or blood cells, into a stem cell-like state, known as induced pluripotent stem (iPS) cells. Building off of this knowledge, the researchers examined both successfully and unsuccessfully reprogrammed cells to better understand the complex process.

Interestingly, the response of most cells appears to be activation of normal fail safe mechanisms, said Tarjei Mikkelsen, a graduate student at the Broad Institute and first author of the Nature paper. Improving the low efficiency of the reprogramming process will require circumventing these mechanisms without disabling them permanently.

The researchers used next-generation sequencing technologies to generate genome-wide maps of epigenetic modifications which control how DNA is packaged and accessed within cells and integrated this approach with gene expression profiling to monitor how cells change during the reprogramming process. Their key findings include:

  1. Fully reprogrammed cells, or iPS cells, demonstrate gene expression and epigenetic modifications that are strikingly similar, although not necessarily identical, to embryonic stem cells.

  2. Cells that escape their initial fail-safe mechanisms can still become stuck in partially reprogrammed states.

  3. By identifying characteristic differences in the epigenetic maps and expression profiles of these partially reprogrammed cells, the researchers designed treatments using chemicals or RNA interference (RNAi) that were sufficient to drive them to a fully reprogrammed state.

  4. One of these treatments, involving the chemotherapeutic 5-azacytidine, could improve the overall efficiency of the reprogramming process by several hundred percent.

A key advance facilitating this work was the isolation of partially reprogrammed cells, said co-author Jacob Hanna, a postdoctoral fellow at the Whitehead Institute, who recently led two other independent reprogramming studies. We expect that further characterization of partially programmed cells, along with the discovery and use of other small molecules, will make cellular reprogramming even more efficient and eventually safe for use in regenerative medicine.


'/>"/>

Contact: Nicole Davis
ndavis@broad.mit.edu
617-258-0952
Broad Institute of MIT and Harvard
Source:Eurekalert

Related biology technology :

1. Pharmaceuticals & Biotechs to Share Insights for Developing Leaders in a Fast-Paced, Competitive Industry
2. PAREXEL Experts to Offer Insights Into Outsourcing Best Practices at 17th Annual Partnerships with CROs Conference
3. PAREXEL to Present Leading Insights Regarding Key Industry Topics at 20th Annual Drug Information Association EuroMeeting
4. New insights into the fate of anti-parasitics in manure and manured soils
5. Arena Pharmaceuticals Selected to Join New NASDAQ NeuroInsights Neurotech Index
6. Medivation Selected as Founding Member of New NASDAQ(R) NeuroInsights(R) Neurotech Index
7. Dental Implant Market Insights Webinar
8. Sangamo BioSciences Announces Presentation of Phase 1 Data of ZFP Therapeutic at International Society for Cellular Therapy (ISCT) Meeting
9. Having Penetrated Israels Domestic Telephony Market, 012 Smile.Communications Prepares for Its Next Goal: Entering Israels Cellular Market
10. Cellular construction methods emulated
11. First Live U.S. Demonstration of Cellvizio GI In Vivo Cellular Imaging Technology to Occur at Johns Hopkins Conference
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... report analyzes the worldwide markets for Biostimulants in US$ by ... Extract Based, and Others. The report also analyzes the Global ... Crops, and Others. The report provides separate comprehensive analytics for ... , Europe , Asia-Pacific ... of World. Annual estimates and forecasts are provided for the ...
(Date:12/8/2016)... Dec. 8, 2016  Biotheranostics today announced that ... of the Breast Cancer Index (BCI) in identifying ... are most at-risk for disease recurrence and might ... from three studies advancing the understanding of the ... tumor biology and inform decisions related to patient ...
(Date:12/8/2016)... 2016 Oxford Gene ... seine Palette an anpassbaren SureSeq™ NGS-Panels mit dem ... das ein schnelles und kostengünstiges Studium der Varianten ... eine Erkennung von Einzel-Nukleotid-Variationen (Single Nucleotide Variation, SNV) ... kleinen Panel und ermöglicht eine individuelle Anpassung durch ...
(Date:12/8/2016)... Francisco, CA (PRWEB) , ... December 08, 2016 ... ... Oculus as finalists in the World Technology Awards. uBiome is one of just ... received across all categories. , In addition to uBiome, companies nominated as finalists ...
Breaking Biology Technology:
(Date:12/7/2016)... AVIV, Israel , December 7, 2016 ... with the expansion of its patent portfolio, which grew to over 40 ... , , ... by its recently filed patent entitled " System, Device, and ... covers technology that enables device makers to forego costly hardware components needed ...
(Date:12/6/2016)... Dec. 6, 2016 Valencell , the leading ... has seen a third consecutive year of triple digit ... in 2016 with a 360 percent increase in companies ... increase was driven by sales of its wrist and ... in its technology for hearables for fitness and healthcare ...
(Date:12/2/2016)... AUSTIN, Texas , Dec. 1, 2016 /PRNewswire/ ... provider, today announced BioLock , an electrocardiogram ... and health monitoring, a key IoT asset. The ... embedded into a vehicle,s steering wheel and mobile ... a simple touch. As vehicle technology ...
Breaking Biology News(10 mins):