Navigation Links
New imaging technique homes in on electrocatalysis of nanoparticles
Date:8/28/2012

By modifying the rate at which chemical reactions take place, nanoparticle catalysts fulfill myriad roles in industry, the biomedical arena and everyday life. They may be used for the production of polymers and biofuels, for improving pollution and emission control devices, to enhance reactions essential for fuel cell technology and for the synthesis of new drugs. Finding new and more effective nanoparticle catalysts to perform these useful functions is therefore vital.

Now Nongjian (NJ) Tao a researcher at Arizona State University's Biodesign Institute has found a clever way to measure catalytical reactions of single nanoparticles and multiple particles printed in arrays, which will help characterize and improve existing nanoparticle catalysts, and advance the search for new ones.

Most catalytic materials synthesized in labs contain particles with different sizes and shapes, each having different electrocatalytical activities, but the conventional methods measure the average properties of many nanoparticles, which smear out the properties of individual nanoparticles.

"The capability of measuring single nanoparticle catalytical reactions allows for determining the relationship between the efficiency of a catalytical reaction and the size, shape, and composition of the nanoparticle." Tao explained. "Such an imaging capability also makes it possible to image arrays of nanoparticle catalytical reactions, which may be used for fast screening of different nanoparticles," he added.

In the current study, platinum nanoparticles acting as electrochemical catalysts are investigated by means of the new technique, known as plasmonic electrochemical imaging. The method combines the spatial resolution of optical detection with the high sensitivity and selectivity of electrochemical recognition.

Results of the study appear in this week's advanced online edition of the journal Nature Nanotechnology.

Scanning electrochemical microscopy (SECM) has been used to image electrochemical reactions by mechanically scanning a sample surface using a microelectrode. In this process however, imaging speed is limited and the presence of the microelectrode itself may impinge on the sample and alter results.

The new method relies instead on imaging electrochemical reactions optically based on the phenomenon of surface plasmon resonance. Surface plasmons are oscillations of free electrons in a metal electrode, and can be created and detected with light. Every electrochemical reaction is accompanied by the exchange of electrons between reactants and electrodes, and the conventional electrochemical methods, including SECM, detect the electrons.

"Our approach is to measure electrochemical reactions without directly detecting the electrons." Tao said. "The trick is to detect the conversion of the reactant into reaction products associated with the exchange of electrons." Such conversion in the vicinity of the electrode affects the plasmon, causing changes in light reflectivity, which the technique converts to an optical image.

Using plasmonic electrochemical current imaging, Tao's group examined the electrocatalytic activity of platinum nanoparticles printed in a microarray on a gold thin-film electrode, demonstrating for the first time the feasibility of high-throughput screening of the catalytic activities of nanoparticles.

Additionally, the new study shows that the same method can be used to investigate individual nanoparticles. As an electrical potential is applied to the electrode and cycled through a range of values, nanoparticles clearly appear as spots on the array. The effect can be seen in accompanying videos, where nanoparticle spots 'develop' over time as the potential changes, much like a polaroid picture gradually appears.

Microarrays featuring different surface densities of nanoparticles were also produced for the study. Results showed that electrocatalytic current at a given potential increases proportionally with nanoparticle density. Further, when individual nanoparticles were characterized using SPR microscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM), good agreement was shown between the results, further validating the new technique.

Tao notes that in principle, plasmonic electrochemical imaging a rapid and non-invasive technique offering the combined benefits of optical and electrochemical detection may be applied to other phenomena for which conventional electrochemical detection methods are currently used.


'/>"/>

Contact: Joseph Caspermeyer
Joseph.Caspermeyer@asu.edu
Arizona State University
Source:Eurekalert  

Related biology technology :

1. Advance in X-ray imaging shines light on nanomaterials
2. A new imaging system produces 3-D models of monuments using unmanned aircraft
3. New imaging technique moves from lab to clinic
4. Imaging Contract-Research Pioneer, Donald P. Rosen, MD, Named CEO of ACR Image Metrix™
5. Scientists learn how to out run damage with imaging technique
6. VisionGate Uses $2.6 Million NIH Grant to Achieve Full Automation of Cell-CT™ 3D Imaging System for Early Diagnosis of Cancer
7. Quantum computing has applications in magnetic imaging, say Pitt researchers
8. Two Top Biological Imaging Centers Offer Powerful Free Online Tool to Researchers, Educators, and Public
9. Integrated 3-D Imaging Facilitates Human Face Transplantation
10. Hologic to Showcase 3D Mammography (Breast Tomosynthesis) and Other Advanced Womens Imaging Technologies at RSNA 2011, the Largest Radiology Show in the World
11. Novel technique to synthesize nanocrystals that harvest solar energy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New imaging technique homes in on electrocatalysis of nanoparticles
(Date:5/3/2016)... ... May 03, 2016 , ... Leading CEOs from ... May 31st and June 1st at The Four Seasons Hotel Boston. , The ... life sciences, offering exclusive access to key decision makers who influence deal making ...
(Date:5/3/2016)... LONDON , May 3, 2016 ... Report Assessing Developers and Producers of Those Competitor Biologics  ... Guide to Companies, Activities and Prospects ,  ... drug companies? And what are their sales potentials? ... There you see results, trends, opportunities and revenue forecasting. ...
(Date:5/2/2016)... , May 2, 2016 ... that its technology partner Mannin Research Inc. will be ... (ARVO), which takes place from May 1-5, 2016 in ... will be meeting with its vendors and research partners. ... business development goals and other collaborative opportunities for the ...
(Date:4/29/2016)... Como, Italy (PRWEB) , ... April 30, 2016 , ... ... their extraordinary textile design, the bioLogic team explored how bacterial properties can be applied ... ways of using Natto bacteria, which move in response to humidity change. The team ...
Breaking Biology Technology:
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
(Date:3/17/2016)... , March 17, 2016 ABI Research, ... forecasts the global biometrics market will reach more ... 118% increase from 2015. Consumer electronics, particularly smartphones, ... fingerprint sensors anticipated to reach two billion shipments ... Dimitrios Pavlakis , Research Analyst at ABI ...
(Date:3/11/2016)... http://www.apimages.com ) - --> http://www.apimages.com ) - ... Images ( http://www.apimages.com ) - Germany . ... new refugee identity cards. DERMALOG will be unveiling this device, and ... Hanover next week.   --> Germany ... the new refugee identity cards. DERMALOG will be unveiling this device, ...
Breaking Biology News(10 mins):