Navigation Links
New graphene discovery boosts oil exploration efforts, could enable self-powered microsensors
Date:7/19/2011

Troy, N.Y. Researchers at Rensselaer Polytechnic Institute have developed a new method to harvest energy from flowing water. This discovery aims to hasten the creation of self-powered microsensors for more accurate and cost-efficient oil exploration.

Led by Rensselaer Professor Nikhil Koratkar, the researchers investigated how the flow of water over surfaces coated with the nanomaterial graphene could generate small amounts of electricity. The research team demonstrated the creation of 85 nanowatts of power from a sheet of graphene measuring .03 millimeters by .015 millimeters.

This amount of energy should be sufficient to power tiny sensors that are introduced into water or other fluids and pumped down into a potential oil well, Koratkar said. As the injected water moves through naturally occurring cracks and crevices deep in the earth, the devices detect the presence of hydrocarbons and can help uncover hidden pockets of oil and natural gas. As long as water is flowing over the graphene-coated devices, they should be able to provide a reliable source of power. This power is necessary for the sensors to relay collected data and information back to the surface.

"It's impossible to power these microsensors with conventional batteries, as the sensors are just too small. So we created a graphene coating that allows us to capture energy from the movement of water over the sensors," said Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering and the Department of Materials Science and Engineering in the Rensselaer School of Engineering. "While a similar effect has been observed for carbon nanotubes, this is the first such study with graphene. The energy-harvesting capability of graphene was at least an order of magnitude superior to nanotubes. Moreover, the advantage of the flexible graphene sheets is that they can be wrapped around almost any geometry or shape."

Details of the study, titled "Harvesting Energy from Water Flow over Graphene," were published online last week by the journal Nano Letters. The study also will appear in a future print edition of the journal. The online version may be viewed at: http://pubs.acs.org/doi/full/10.1021/nl2011559

It is the first research paper to result from the $1 million grant awarded to Koratkar's group in March 2010 by the Advanced Energy Consortium.

Hydrocarbon exploration is an expensive process that involves drilling deep down in the earth to detect the presence of oil or natural gas. Koratkar said oil and gas companies would like to augment this process by sending out large numbers of microscale or nanoscale sensors into new and existing drill wells. These sensors would travel laterally through the earth, carried by pressurized water pumped into these wells, and into the network of cracks that exist underneath the earth's surface. Oil companies would no longer be limited to vertical exploration, and the data collected from the sensors would arm these firms with more information for deciding the best locations to drill.

The team's discovery is a potential solution for a key challenge to realizing these autonomous microsensors, which will need to be self-powered. By covering the microsensors with a graphene coating, the sensors can harvest energy as water flows over the coating.

"We'll wrap the graphene coating around the sensor, and it will act as a 'smart skin' that serves as a nanofluidic power generator," Koratkar said.

Graphene is a single-atom-thick sheet of carbon atoms, which are arranged like a chain-link fence. For this study, Koratkar's team used graphene that was grown by chemical vapor deposition on a copper substrate and transferred onto silicon dioxide. The researchers created an experimental water tunnel apparatus to test the generation of power as water flows over the graphene at different velocities.

Along with physically demonstrating the ability to generate 85 nanowatts of power from a small fragment of graphene, the researchers used molecular dynamics simulations to better understand the physics of this phenomenon. They discovered that chloride ions present in the water stick to the surface of graphene. As water flows over the graphene, the friction force between the water flow and the layer of adsorbed chloride ions causes the ions to drift along the flow direction. The motion of these ions drags the free charges present in graphene along the flow direction creating an internal current.

This means the graphene coating requires ions to be present in water to function properly. Therefore, oil exploration companies would need to add chemicals to the water that is injected into the well. Koratkar said this is an easy, inexpensive solution.

For the study, Koratkar's team also tested the energy harvested from water flowing over a film of carbon nanotubes. However, the energy generation and performance was far inferior to those attained using graphene, he said.

Looking at potential future applications of this new technology, Koratkar said he could envision self-powered microrobots or microsubmarines. Another possibility is harvesting power from a graphene coating on the underside of a boat.


'/>"/>

Contact: Michael Mullaney
mullam@rpi.edu
518-276-6161
Rensselaer Polytechnic Institute
Source:Eurekalert  

Related biology technology :

1. Graphene pioneers follow in Nobel footsteps
2. New graphene-based material clarifies graphite oxide chemistry
3. Researchers discover method for mass production of nanomaterial graphene
4. Light-speed nanotech: Controlling the nature of graphene
5. Scientists prove graphenes edge structure affects electronic properties
6. Graphene yields secrets to its extraordinary properties
7. Graphene may have advantages over copper for IC interconnects at the nanoscale
8. Bilayer graphene gets a bandgap
9. Material world: Graphenes versatility promises new applications
10. UCR scientists manipulate ripples in graphene, enabling strain-based graphene electronics
11. Researchers design new graphene-based, nano-material with magnetic properties
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New graphene discovery boosts oil exploration efforts, could enable self-powered microsensors
(Date:2/9/2016)... ... 09, 2016 , ... With a presidential election in November and the future ... bring together over 500 top healthcare leaders for a night and day of debates ... by MBA students of the University of Pennsylvania’s Wharton School, will be held February ...
(Date:2/9/2016)... (PRWEB) , ... February 09, 2016 , ... Tunnell Consulting, ... Based in Paris, he will focus on acquiring new accounts and work closely ... , “Fred brings to our European clients more than 15 years ...
(Date:2/9/2016)... , Feb. 9, 2016 This market ... the current and future prospects of the market in ... report include companies engaged in the manufacture of microbiology ... executive summary with a market snapshot providing the overall ... of this report. This section also provides the overall ...
(Date:2/8/2016)... Feb. 8, 2016 /PRNewswire/ - BIOREM Inc. (TSXV: BRM) ("Biorem" ... ten finalists for clean technology companies in the TSX Venture ... 10 companies listed on the TSX Venture Exchange, in each ... clean technology & life sciences, diversified industries and ... given to return on investment, market cap growth, trading volume ...
Breaking Biology Technology:
(Date:2/3/2016)... , February 4, 2016 --> ... SEK 1,351.5 M (105.0), up 1,187% compared with fourth quarter of 2014. ... to SEK 517.6 M (loss: 30.0). Earnings per share increased ... was SEK 537.4 M (neg: 74.7). , ... Revenues amounted to SEK 2,900.5 M (233.6), up 1,142% compared with 2014. ...
(Date:2/2/2016)... , Feb. 2, 2016 This BCC ... bioinformatic market by reviewing the recent advances in ... that drive the field forward. Includes forecast through ... Identify the challenges and opportunities that exist in ... software solution developers, as well as IT and ...
(Date:2/1/2016)... -- Rising sales of consumer electronics coupled ... gesture control market size through ... electronics coupled with new technological advancements to drive global ... through 2020   --> Rising ... to drive global touchfree intuitive gesture control market ...
Breaking Biology News(10 mins):