Navigation Links
New graphene-based material clarifies graphite oxide chemistry

AUSTIN, Texas A new "graphene-based" material that helps solve the structure of graphite oxide and could lead to other potential discoveries of the one-atom thick substance called graphene, which has applications in nanoelectronics, energy storage and production, and transportation such as airplanes and cars has been created by researchers at The University of Texas at Austin.

To get an idea of the nanomaterial graphene, imagine a lightweight material having the strongest chemical bond in nature and, thus, exceptional mechanical properties. In addition it conducts heat better than any other material and has charge carriers moving through it at a significant fraction of the speed of light. Just an atom thick, graphene consists of a "chickenwire" (or honeycomb) bonding arrangement of carbon atoms also known as a single layer of graphite.

Mechanical Engineering Professor Rod Ruoff and his co-authors have, for the first time, prepared carbon-13 labeled graphite. They did this by first making graphite that had every "normal" carbon atom having the isotope carbon-12, which is magnetically inactive, replaced with carbon-13, which is magnetically active. They then converted that to carbon-13 labeled graphite oxide and used solid-state nuclear magnetic resonance to discern the detailed chemical structure of graphite oxide.

The work by Ruoff's team will appear in the Sept. 26 issue of the journal Science.

"As a result of our work published in Science, it will now be possible for scientists and engineers to create different types of graphene (by using carbon-13 labeled graphene as the starting material and doing further chemistry to it) and to study such graphene-based materials with solid-state nuclear magnetic resonance to obtain their detailed chemical structure," Ruoff says. "This includes situations such as where the graphene is mixed with a polymer and chemically bonded at critical locations to make remarkable polymer matrix composites; or embedded in glass or ceramic materials; or used in nanoelectronic components; or mixed with an electrolyte to provide superior supercapacitor or battery performance. If we don't know the chemistry in detail, we won't be able to optimize properties."

Graphene-based materials are a focus area of research at the university because they are expected to have applications for ultra-strong yet lightweight materials that could be used in automobiles and airplanes to improve fuel efficiency, the blades of wind turbines for improved generation of electrical power, as critical components in nanoelectronics that could have blazing speeds but very low power consumption, for electrical energy storage in batteries and supercapacitors to enable renewable energy production at a large scale and in transparent conductive films that will be used in solar cells and image display technology. In almost every application, sensitive chemical interactions with surrounding materials will play a central role in understanding and optimizing performance.

Ruoff and his team proved they had made such an isotopically-labeled material from measurements by co-author Frank Stadermann of Washington University in St Louis. Stadermann used a special mass spectrometer typically used for measuring the isotope abundances of various elements that are in micrometeorites that have landed on Earth. Then, 100 percent carbon-13 labeled graphite was converted to 100 percent carbon-13 labeled graphite oxide, also a layered material but with some oxygen atoms attached to the graphene by chemical bonds.

Co-authors Yoshitaka Ishii and Medhat Shaibat of the University of Illinois-Chicago then used solid state nuclear magnetic resonance to help reveal the detailed chemical bonding network in graphite oxide. Ruoff says even though graphite oxide was first synthesized more than150 years ago the distribution of oxygen atoms has been debated even quite recently.

"The ability to control the isotopic labeling between carbon-12 and carbon-13 will lead to many other sorts of studies," says Ruoff, who holds the Cockrell Family Regents Chair in Engineering #7.

He collaborates on other graphene projects with other university scientists and engineers such as Allan MacDonald (Department of Physics and Astronomy), Sanjay Banerjee, Emanuel Tutuc and Bhagawan Sahu (Department of Electrical and Computer Engineering) and Gyeong Hwang (Department of Chemical Engineering), and some of these collaborations include industrial partners such as Texas Instruments, IBM and others.


Contact: Rod Ruoff
University of Texas at Austin

Related biology technology :

1. Graphene-based gadgets may be just years away
2. New carbon material shows promise of storing large quantities of renewable electrical energy
3. NPL to create encyclopedia for space nanomaterials
4. Zeus Webinar: Bioabsorbable Polymers as Biomaterials
5. Using nanotechnology to create high-performance materials
6. Tree branching key to efficient flow in nature and novel materials
7. New process creates 3-D nanostructures with magnetic materials
8. Nanocopoeia Licenses New Polymer-Based Biomaterials Platform From the University of Western Ontario
9. Sigma-Aldrich Signs Agreement With Plextronics to Distribute Plexcore(R) Organic Electronics Materials
10. ULURU Inc. to Present at the 8th World Biomaterials Congress
11. CorMatrix(R) Announces FDA 510(k) for Novel Biomaterial Implant for Intracardiac Repair
Post Your Comments:
(Date:10/13/2015)... , Oct. 13, 2015  Generex Biotechnology Corporation ( ... into a non-binding Letter of Intent (LOI) with MediTemp Ltd. ... developed a proprietary cooling technology designed to improve sperm quality ... the United States and three million men in ... and 44 diagnosed as infertile.  For 42% of those men, ...
(Date:10/13/2015)... ... , ... Proove Biosciences, a commercial and research leader ... Keck Medicine of the University of Southern California (USC) Pain Center to ... Research Clinical Objectives Linking Genotypic and Phenotypic Association with Pain Outcomes) is one ...
(Date:10/12/2015)... (PRWEB) , ... October 12, 2015 , ... Spirax Sarco, ... the release of the CSM-C 600 compact clean steam generator . This ... that meets the requirements of HTM2031, HTM2010, and EN285 standards. The CMS-C 600 ...
(Date:10/12/2015)... -- cell surface marker detection market is ... a new report by Grand View Research, Inc. This growth ... oncology diseases and other cell-associated disorders. --> cell ... 6.49 billion by 2022, according to a new report by ... attributed to rise in incidence of oncology diseases and other ...
Breaking Biology Technology:
(Date:10/9/2015)... ) ... "Samsung Galaxy S6 Fingerprint Sensor - Reverse ... --> ) has announced ... S6 Fingerprint Sensor - Reverse Costing Analysis" ... Research and Markets ( ) ...
(Date:10/8/2015)... , October 8, 2015 ... the "Company"), a biometric authentication company focused on ... the Wocket® smart wallet announces that revenues for ... approximately $410,000 compared with $113,00 for the three ... 9 months ended September 30, 2015 were approximately ...
(Date:10/6/2015)... , Oct. 6, 2015 Track Group, Inc. ... that it has signed a contract with the Virginia ... the full range of sentences under the Department,s oversight. ... the Americas. "This contract with the Virginia DOC will ... US and advances our position as a trusted leader ...
Breaking Biology News(10 mins):