Navigation Links
New graphene-based material clarifies graphite oxide chemistry
Date:9/25/2008

AUSTIN, Texas A new "graphene-based" material that helps solve the structure of graphite oxide and could lead to other potential discoveries of the one-atom thick substance called graphene, which has applications in nanoelectronics, energy storage and production, and transportation such as airplanes and cars has been created by researchers at The University of Texas at Austin.

To get an idea of the nanomaterial graphene, imagine a lightweight material having the strongest chemical bond in nature and, thus, exceptional mechanical properties. In addition it conducts heat better than any other material and has charge carriers moving through it at a significant fraction of the speed of light. Just an atom thick, graphene consists of a "chickenwire" (or honeycomb) bonding arrangement of carbon atoms also known as a single layer of graphite.

Mechanical Engineering Professor Rod Ruoff and his co-authors have, for the first time, prepared carbon-13 labeled graphite. They did this by first making graphite that had every "normal" carbon atom having the isotope carbon-12, which is magnetically inactive, replaced with carbon-13, which is magnetically active. They then converted that to carbon-13 labeled graphite oxide and used solid-state nuclear magnetic resonance to discern the detailed chemical structure of graphite oxide.

The work by Ruoff's team will appear in the Sept. 26 issue of the journal Science.

"As a result of our work published in Science, it will now be possible for scientists and engineers to create different types of graphene (by using carbon-13 labeled graphene as the starting material and doing further chemistry to it) and to study such graphene-based materials with solid-state nuclear magnetic resonance to obtain their detailed chemical structure," Ruoff says. "This includes situations such as where the graphene is mixed with a polymer and chemically bonded at critical locations to make remarkable polymer matrix composites; or embedded in glass or ceramic materials; or used in nanoelectronic components; or mixed with an electrolyte to provide superior supercapacitor or battery performance. If we don't know the chemistry in detail, we won't be able to optimize properties."

Graphene-based materials are a focus area of research at the university because they are expected to have applications for ultra-strong yet lightweight materials that could be used in automobiles and airplanes to improve fuel efficiency, the blades of wind turbines for improved generation of electrical power, as critical components in nanoelectronics that could have blazing speeds but very low power consumption, for electrical energy storage in batteries and supercapacitors to enable renewable energy production at a large scale and in transparent conductive films that will be used in solar cells and image display technology. In almost every application, sensitive chemical interactions with surrounding materials will play a central role in understanding and optimizing performance.

Ruoff and his team proved they had made such an isotopically-labeled material from measurements by co-author Frank Stadermann of Washington University in St Louis. Stadermann used a special mass spectrometer typically used for measuring the isotope abundances of various elements that are in micrometeorites that have landed on Earth. Then, 100 percent carbon-13 labeled graphite was converted to 100 percent carbon-13 labeled graphite oxide, also a layered material but with some oxygen atoms attached to the graphene by chemical bonds.

Co-authors Yoshitaka Ishii and Medhat Shaibat of the University of Illinois-Chicago then used solid state nuclear magnetic resonance to help reveal the detailed chemical bonding network in graphite oxide. Ruoff says even though graphite oxide was first synthesized more than150 years ago the distribution of oxygen atoms has been debated even quite recently.

"The ability to control the isotopic labeling between carbon-12 and carbon-13 will lead to many other sorts of studies," says Ruoff, who holds the Cockrell Family Regents Chair in Engineering #7.

He collaborates on other graphene projects with other university scientists and engineers such as Allan MacDonald (Department of Physics and Astronomy), Sanjay Banerjee, Emanuel Tutuc and Bhagawan Sahu (Department of Electrical and Computer Engineering) and Gyeong Hwang (Department of Chemical Engineering), and some of these collaborations include industrial partners such as Texas Instruments, IBM and others.


'/>"/>

Contact: Rod Ruoff
r.ruoff@mail.utexas.edu
512-471-4691
University of Texas at Austin
Source:Eurekalert

Related biology technology :

1. Graphene-based gadgets may be just years away
2. New carbon material shows promise of storing large quantities of renewable electrical energy
3. NPL to create encyclopedia for space nanomaterials
4. Zeus Webinar: Bioabsorbable Polymers as Biomaterials
5. Using nanotechnology to create high-performance materials
6. Tree branching key to efficient flow in nature and novel materials
7. New process creates 3-D nanostructures with magnetic materials
8. Nanocopoeia Licenses New Polymer-Based Biomaterials Platform From the University of Western Ontario
9. Sigma-Aldrich Signs Agreement With Plextronics to Distribute Plexcore(R) Organic Electronics Materials
10. ULURU Inc. to Present at the 8th World Biomaterials Congress
11. CorMatrix(R) Announces FDA 510(k) for Novel Biomaterial Implant for Intracardiac Repair
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/8/2016)... ... December 08, 2016 , ... ... cells — optogenetics — is key to exciting advances in the study and ... patterned light projected via free-space optics stimulates small, transparent organisms and excites neurons ...
(Date:12/8/2016)... ... December 08, 2016 , ... KBioBox llc ... to client demand KbioBox developed a sophisticated “3 click” gene dditing off target ... from KBioBox’s new website, https://www.kbiobox.com/ and powered by the company’s ...
(Date:12/8/2016)... PRINCETON, N.J. , Dec. 8, 2016 ... late-stage biopharmaceutical company focused on developing and commercializing products ... medical need, announced today that it will be hosting ... 8:30-9:30 am ET on the origins of innate defense ... as a review of oral mucositis and the recently ...
(Date:12/8/2016)... Dec. 8, 2016   Biocept, Inc . ... provider of clinically actionable liquid biopsy tests to ... clinical data featuring its Target Selector™ Circulating Tumor ... for the detection of actionable biomarkers in patients ... sponsored by Sara Cannon Research Institute (SCRI), the ...
Breaking Biology Technology:
(Date:11/16/2016)... SANTA CLARA, Calif. , Nov. 16, 2016 /PRNewswire/ ... company enhancing user experience and security for consumer ... provider for the financial and retail industry, today ... more secure and convenient way to authenticate users ... now uses Sensory,s TrulySecure™ software which ...
(Date:11/14/2016)... 2016  xG Technology, Inc. ("xG" or the "Company") ... communications for use in challenging operating environments, announced its ... Management will hold a conference call to discuss these ... Time (details below). Key Recent Accomplishments ... binding agreement to acquire Vislink Communication Systems. The purchase ...
(Date:6/22/2016)... June 22, 2016  The American College of Medical Genetics ... Executive Magazine as one of the fastest-growing trade shows ... at the Bellagio in Las Vegas . ... percentage of growth in each of the following categories: net ... and number of attendees. The 2015 ACMG Annual Meeting was ...
Breaking Biology News(10 mins):