Navigation Links
New designer toxins kill Bt-resistant insect pests
Date:11/1/2007

A new way to combat resistant pests stems from discovering how the widely used natural insecticide Bt kills insects.

Figuring out how Bt toxins punch holes in the cells of an insect's gut was the key to designing the new toxins, according to a Mexico-U.S. research team.

Some insects have developed resistance to Bt toxins, naturally occurring insecticides used worldwide to combat pests of crops such as cotton and corn and also disease-carrying mosquitoes.

"This is the first time that knowledge of how Bt toxins work and how insects become resistant have been used to design toxins that kill resistant insects," said research team member Bruce Tabashnik of The University of Arizona in Tucson.

The discovery is important for cotton-growing areas such as northern Mexico, Texas and Arizona. More than 90 percent of Arizona's approximately 200,000 acres of cotton are planted in the biotech cotton known as Bt cotton.

"Our goal is to control insects in environmentally friendly ways so we can limit the damage that insects do to crops and the harm they do to people by transmitting disease," said Tabashnik, head of the UA's entomology department and a member of the UA's BIO5 Institute.

"Bt toxins are great for that because they only kill certain insects and don't harm other living things. These new designer toxins give us another environmentally friendly way to control insects."

The Mexico team developed the designer toxins by tweaking the gene that codes for the toxin, a protein. The researchers then teamed up with Tabashnik to test their modified toxins on UA's colony of Bt-resistant pink bollworms, major cotton pests.

Team member Alejandra Bravo, a research scientist at Universidad Nacional Autonma de Mxico (UNAM) said, "We proposed that changing a small part of the toxin would kill the insect -- and we did it."

The team's research article, "Engineering Modified Bt Toxins to Counter Insect Resistance," is scheduled for publication in Science Express, the online version of the journal Science, on Thursday, Nov. 1. A complete list of authors and funding agencies is at the bottom of this release.

The collaboration between the UNAM team of molecular biologists and the American expert in the evolution of pest resistance happened by accident.

Mario Sobern and Alejandra Bravo, a husband-wife research team, had invited Tabashnik to give a talk in Cuernavaca, Mexico, at a scientific conference on pore-forming bacterial toxins such as Bt solution.

Tabashnik said, "While I was there, I got turista -- which is caused by pore-forming bacterial toxins. I was pretty sick."

The couple cared for Tabashnik while he recovered. He asked what he could do to repay their kindness, and Sobern suggested collaborating to test their designer toxins on UA's resistant insects.

"It was the perfect match," Tabashnik said. "We knew what made our strains resistant, and they hypothesized that their designer toxins could overcome the resistance."

The discovery is based on understanding a receptor molecule called cadherin on the insects' gut membranes. Normal cadherin binds with the Bt toxin in a lock-and-key fashion.

After the toxin binds, an enzyme hacks a bit off each toxin molecule.

The trimmed toxin molecules clump and form pores in the gut membrane cells. The pores let materials flow chaotically in and out of the cells. As a result cells and ultimately the insect die.

Tabashnik and his UA colleagues Tim Dennehy and Yves Carrire knew the Bt-resistant pink bollworms in their colony had a mutant version of cadherin.

Tabashnik said, "These resistant insects have genetic changes, mutations, that change the lock. Their cadherin no longer takes the key."

The UNAM team did an end-run around the resistant insects' strategy. The modified, or designer, toxins have that crucial bit already gone, so they clump and form the death-dealing pores. No cadherin needed.

Bravo said, "When Bruce told us it killed the insects, we were very happy. We know if it kills resistant insects, it will be very important."

The researchers have applied for a multinational patent for the designer toxins. UNAM is the lead organization in the patent.

Combating Bt-resistant pests without using broad-spectrum insecticides can make agriculture safer for farm workers, better for the environment and more profitable for growers, Tabashnik said.

He said, "The university research that helped produce this new invention is an investment that can bring returns to the state of Arizona.


'/>"/>

Contact: Mari N. Jensen
mnjensen@email.arizona.edu
520-626-9635
University of Arizona  
Source:Eurekalert

Related biology technology :

1. WARF, UW-Madison seek designer for the Wisconsin Institutes for Discovery
2. Game designers, researchers to demo healthful games
3. Endotoxins and their Relevance in R&D ApplicationsLPS Detection & Removal Methods
4. Preparative Nondenaturing Gel Electrophoresis Used in the Purification of an Esterase Involved in Insecticide Resistance, Rev C
5. Identification of Insecticides and Herbicides by LC/MS/MS Using the API 2000 LC/MS/MS System
6. Insect Cell Culture Using a BioFlo 110 Benchtop Bioreactor
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
New designer toxins kill Bt-resistant insect pests
(Date:2/10/2016)... -- IsoRay, Inc. (NYSE MKT: ISR), a medical technology company ... for the treatment of prostate, brain, lung, head and ... for the second quarter and six months of fiscal ... --> --> Revenue was $1.19 ... ended December 31, 2015, a 12% increase compared to ...
(Date:2/10/2016)... ... February 10, 2016 , ... Benchmark Research, a ... promotion of two long-standing principal investigators (PI) to the roles of Chief Medical ... Development. , Dr. Laurence Chu, a Benchmark Research PI in the Austin office, ...
(Date:2/10/2016)... ... February 10, 2016 , ... SonaCare Medical, LLC reports the ... Sonalinkā„¢ remote monitoring. The inaugural launch of this new technology occurred over the ... Samuel Peretsman to a HIFU technical expert at SonaCare Medical headquarters. , ...
(Date:2/10/2016)... ... 10, 2016 , ... Global Stem Cells Group, ... Global Stem Cells Network (GSCN) and its affiliate Global Medical Training Network ... adipose and bone marrow therapies. , Through the new collaboration, Global Stem ...
Breaking Biology Technology:
(Date:1/28/2016)... SYNA ), a leading developer of human interface solutions, today ... --> --> Net revenue ... to the comparable quarter last year to $470.5 million. Net income ... $0.93 per diluted share. --> ... 2016 grew 9 percent over the prior year period to $60.3 ...
(Date:1/25/2016)... , Jan. 25, 2016  Glencoe Software, the ... pharma and publication industries, will provide the data management ... Centre (NPSC). ... Phenotypic analysis measures ... whole organisms, allowing comparisons between states such as health ...
(Date:1/21/2016)... , January 21, 2016 ... to a new market research report "Emotion Detection and ... Others), Software Tools (Facial Expression, Voice Recognition and ... - Global forecast to 2020", published by MarketsandMarkets, ... expected to reach USD 22.65 Billion by 2020, ...
Breaking Biology News(10 mins):