Navigation Links
New HIV vaccine approach targets desirable immune cells
Date:9/1/2011

DURHAM, N.C. Researchers at Duke University Medical Center, Beth Israel Deaconess Medical Center and Harvard Medical School have demonstrated an approach to HIV vaccine design that uses an altered form of HIV's outer coating or envelope protein.

The researchers showed that they could design HIV envelopes that could bind better to immature B cell receptors to create an enhanced immune response in an animal model. Immature B cells are the targets of vaccines, and when strongly targeted, they produce strong vaccine responses. The work of the Duke team was to improve on the ability of the HIV envelope to target immature B cells of the immune system.

"This is first step towards a new way of making vaccines against HIV: targeting immature immune cells and attempting to drive a pathway of events that rarely occur," said Barton Haynes, M.D., co-senior author and director of the national Center for HIV-AIDS Vaccine Immunology (CHAVI) laboratory and Frederic M. Hanes Professor of Medicine and Immunology at Duke University School of Medicine. "This avenue of research provides additional evidence about why some of the earlier, traditional vaccine approaches for HIV may not have been successful."

The study was published in the Sept. 1 issue of PLoS Pathogens.

Handcrafting vaccines that will stimulate different stages of the pathway toward immunity looks to be important, Haynes said. A vaccine usually uses a part of the virus (like part of its outer coating) or a harmless form of the virus to create a strong immune response against the virus.

This new work is the first time researchers have made an HIV envelope that binds better to precursor antibodies and also stimulates better immunity, compared with a natural envelope, in primates.

Hua-Xin Liao, M.D., Ph.D., a professor of medicine in the Duke Human Vaccine Institute (DHVI) and co-senior author, created the altered HIV outer coats. "Roadblocks thrown up by HIV have plagued HIV vaccine development," Liao said. "HIV hides its Achilles' heels of vulnerability on its outer coat by covering them with sugars. This covering is the result of virus mutations as the virus became resistant to antibodies."

The researchers found that the sugars on the natural HIV envelope prevented the envelope from binding to the immature B cell receptors that scientists want to trigger with a vaccine. So human and animal B cells fail to make antibodies against the HIV envelope's vulnerable spots when natural HIV envelope is injected as a vaccine candidate, even though these viral envelopes are the target of protective, neutralizing antibodies.

"We found that when you remove the sugars from the envelope proteins, you can create an envelope that targets those immature B cell receptors," said Haynes, who is also director of the DHVI.

"After the initial results, we completed a study in primates, which are similar to humans in terms of their genetics and their immune systems," Haynes said. "When they were given the HIV outer coat with many of the sugars removed, this sugar-depleted envelope bound better to the immature B cell receptors and stimulated antibodies better, which is a first step in the HIV-1 envelope activating an immature B cell target that previously it could not target."

Dimiter Dimitrov at the National Cancer Institute has previously shown that the natural HIV envelope protein frequently does not target immature B cells.

"The importance of this new finding is that it not only provides evidence for our hypothesis, but also for the first time it has identified envelope-based immunogens capable of binding to putative antibody germline predecessors that correlated with enhanced immunogenicity in animals," Dimitrov said.

Investigators have found that pathways for inducing the "right" kind of antibodies may be blocked or are unusual and are not routinely followed by HIV envelope-induced antibodies. John Mascola, Peter Kwong and colleagues at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases (NIAID) have shown that very complex, broadly neutralizing B cell maturation pathways may require targeting early B cell receptors.

"This is an important step forward," said Nelson Michael, director of the Military HIV Research Program at the Walter Reed Army Institute of Research. "The observation that improving envelope immunogen binding to immature B cell receptors can improve immunogenicity provides new hope for design of strategies for inducing difficult-to-induce neutralizing antibodies."

Norman Letvin, a professor of medicine in immunology at Harvard, performed the envelope immunizations in rhesus macaques. "These new envelope immunogens are the first step towards driving immature B cells through new pathways to make HIV-protective antibodies," Letvin said.


'/>"/>

Contact: Mary Jane Gore
mary.gore@duke.edu
919-660-1309
Duke University Medical Center
Source:Eurekalert

Related biology technology :

1. GeoVax Awarded $3.6 Million Grant by U.S. Government for its HIV/AIDS Vaccine Program
2. Americans Travel to Mexico for Stem Cell Stimulation Therapies and E+ Peptide Cancer Vaccine -- Treatments Not Yet Offered in U.S.
3. Scientists take a step towards developing better vaccines for bluetongue
4. SEEK Announces Clinical Proof of Efficacy in HIV Vaccine Phase Ib/II Human Trial
5. Final countdown: Atlantis to carry next-generation vaccine candidate on last space voyage
6. Sorrento Therapeutics Innovative Approach to Developing Vaccines and Therapeutics for MRSA Receives Continued Support From the National Institute of Allergy and Infectious Diseases
7. New salmonella-based clean vaccines aid the fight against infectious disease
8. Inovio Pharmaceuticals DNA Vaccine for Foot-and-Mouth Disease Generates Protective Neutralizing Antibodies in Second Large-Animal Study
9. Inovio Pharmaceuticals Prostate Cancer DNA Vaccine Demonstrates Strong T Cell Responses in Monkeys; Company on Track for Phase I Clinical Trial
10. PharmAthene Achieves Anthrax Vaccine Program Milestone and Successfully Completes Technology Transfer
11. GeoVax Initiates Third Site For Therapeutic Testing of Its HIV Vaccine
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/12/2017)... CA (PRWEB) , ... October ... ... (https://www.onramp.bio/ ) has launched Rosalind™, the first-ever genomics analysis platform specifically designed ... bioinformatics complexity. Named in honor of pioneering researcher Rosalind Franklin, who made ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ... pathology, announced today it will be hosting a Webinar titled, “Pathology is going ... Pathology Associates , on digital pathology adoption best practices and how Proscia improves ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh ... orphan drug designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of ... SBT-100 is able to cross the cell membrane and bind intracellular STAT3 and ...
(Date:10/10/2017)... , Oct. 10, 2017 International research firm Parks ... Strategy, will speak at the TMA 2017 Annual Meeting , October ... trends in the residential home security market and how smart safety and ... Parks ... "The residential ...
Breaking Biology Technology:
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/30/2017)... The research team of The Hong Kong ... identification by adopting ground breaking 3D fingerprint minutiae recovery and matching ... and accuracy for use in identification, crime investigation, immigration control, security ... ... A research team led by ...
Breaking Biology News(10 mins):