Navigation Links
New DNA-based technique for assembly of nano- and micro-sized particles
Date:9/12/2007

UPTON, NY Scientists at the U.S. Department of Energys Brookhaven National Laboratory have developed a new method for controlling the self-assembly of nanometer and micrometer-sized particles. The method, based on designed DNA shells that coat a particles surface, can be used to manipulate the structure and therefore the properties and potential uses of numerous materials that may be of interest to industry. For example, such fine-tuning of materials at the molecular level promises applications in efficient energy conversion, cell-targeted systems for drug delivery, and bio-molecular sensing for environmental monitoring and medical applications.

The novel method, for which a patent application has been filed, was developed by Brookhaven researchers Mathew M. Maye, Dmytro Nykypanchuk, Daniel van der Lelie, and Oleg Gang and is described in the September 12 online edition of Small, a leading journal on nanoscience and nanotechnology.

Our method is unique because we attached two types of DNA with different functions to particles surfaces, said Gang, who leads the research team. The first type complementary single strands of DNA forms a double helix. The second type is non-complementary, neutral DNA, which provides a repulsive force. In contrast to previous studies in which only complementary DNA strands are attached to the particles, the addition of the repulsive force allows for regulating the size of particle clusters and the speed of their self-assembly with more precision.

When two non-complementary DNA strands are brought together in a fixed volume that is typically occupied by one DNA strand, they compete for space, said Maye. Thus, the DNA acts as a molecular spring, and this results in the repulsive force among particles, which we can regulate. This force allows us to more easily manipulate particles into different formations.

The researchers performed the experiments on gold nanoparticles measuring billionths of a meter and polystyrene (a type of plastic) microparticles measuring millionths of a meter. These particles served as models for the possibility of using the technique with other small particles. The scientists synthesized DNA to chemically react with the particles. They controlled the assembly process by keeping the total amount of DNA constant, while varying the relative fraction of complementary and non-complementary DNA. This technique allowed for regulating assembly over a very broad range, from forming clusters consisting of millions of particles to almost keeping individual particles separate in a non-aggregating form.

It is like adjusting molecular springs, said Nykypanchuk. If there are too many springs, particles will bounce from each other, and if there are too few springs, particles will likely stick to each other.

The method was tested separately on the nano- and micro-sized particles, and was equally successful in providing greater control than using only complementary DNA in assembling both types of particles into large or small groupings.

To determine the structure of the assembled particles and to learn how to modify them for particular uses, the researchers used transmission electron microscopy to visualize the clusters, as well as x-ray scattering at the National Synchrotron Light Source to study particles in solution, the DNAs natural environment.


'/>"/>

Contact: Diane Greenberg
greenb@bnl.gov
631-344-2347
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related biology technology :

1. A Simple and Rapid Technique to Purify High-Quality Midiprep DNA
2. Comparison of Growth Techniques and Media for the Purpose of Plasmid Isolation from E. coli Using the Eppendorf Perfectprep Plasmid Mini Kit
3. Temporal Temperature Gradient Electrophoresis: A Powerful Technique to Screen Mutations
4. Fundamentals of Fermentation: Techniques For Benchtop Fermentors
5. A technique for increasing yields in bioreactors and disposable cell-culture systems
6. New MailFoundry product fights latest spam techniques
7. WiCell, California firm agree to distribute stem cell lines derived with new technique
8. NimbleGen Systems CGS technique helps identify stomach bacteria
9. UW-Madison tries new techniques for nanotech
10. Researchers report major advance in gene therapy technique
11. Lucigen aims to fill holes in genetic maps with new technique
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/11/2017)... ... October 11, 2017 , ... ComplianceOnline’s Medical Device Summit is back ... 8th June 2018 in San Francisco, CA. The Summit brings together current and former ... CEOs, board directors and government officials from around the world to address key issues ...
(Date:10/11/2017)... ... October 11, 2017 , ... A ... pregnancy rates in frozen and fresh in vitro fertilization (IVF) transfer ... age to IVF success. , After comparing the results from the fresh and ...
(Date:10/10/2017)... California (PRWEB) , ... October 10, 2017 , ... Dr. ... speaking at his local San Diego Rotary Club. The event entitled ... Diego, CA and had 300+ attendees. Dr. Harman, DVM, MPVM was joined by ...
(Date:10/9/2017)... DIEGO , Oct. 9, 2017  BioTech ... biological mechanism by which its ProCell stem cell ... critical limb ischemia.  The Company, demonstrated that treatment ... amount of limbs saved as compared to standard ... the molecule HGF resulted in reduction of therapeutic ...
Breaking Biology Technology:
(Date:4/13/2017)... PUNE, India , April 13, 2017 According ... Identity Proofing, Identity Authentication, Identity Analytics, Identity Administration, and Authorization), Service, Authentication ... by MarketsandMarkets™, the IAM Market is expected to grow from USD 14.30 ... Annual Growth Rate (CAGR) of 17.3%. ... ...
(Date:4/11/2017)... , April 11, 2017 NXT-ID, Inc. ... technology company, announces the appointment of independent Directors Mr. ... to its Board of Directors, furthering the company,s corporate governance ... Gino ... we look forward to their guidance and benefiting from their ...
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
Breaking Biology News(10 mins):