Navigation Links
Needle beam could eliminate signal loss in on-chip optics
Date:9/7/2012

Cambridge, Mass. September 7, 2012 - An international, Harvard-led team of researchers have demonstrated a new type of light beam that propagates without spreading outwards, remaining very narrow and controlled along an unprecedented distance. This "needle beam," as the team calls it, could greatly reduce signal loss for on-chip optical systems and may eventually assist the development of a more powerful class of microprocessors.

Based at the Harvard School of Engineering and Applied Sciences (SEAS) and the Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, in France, the applied physicists both characterized and created this needle beam, which travels efficiently at the interface of gold and air. Their findings were published online August 31 in the journal Physical Review Letters.

The needle beam arises from a special class of quasiparticles called surface plasmons, which travel in tight confinement with a metal surface. The metallic stripes that carry these surface plasmons have the potential to replace standard copper electrical interconnects in microprocessors, enabling ultrafast on-chip communications.

One of the fundamental problems that has so far hindered the development of such optical interconnects is the fact that all waves naturally spread laterally during propagation, a phenomenon known as diffraction. This reduces the portion of the signal that can actually be detected.

"We have made a major step toward solving this problem by discovering and experimentally confirming the existence of a previously overlooked solution of Maxwell's equations that govern all light phenomena," says principal investigator Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS. "The solution is a highly localized surface plasmon wave that propagates for a long distance, approximately 80 microns in our experiments, in a straight line without any diffraction."

The so-called needle beam, the technical term for which is a cosine-Gauss plasmon beam, propagates in tight confinement with a nanostructured metal surface. Lead author Jiao Lin, a visiting postdoctoral fellow at SEAS from the Singapore Institute of Manufacturing and Technology, and coauthor Patrice Genevet, a research associate in Capasso's group, found an ingenious way to demonstrate the theorized phenomenon. They sculpted two sets of grooves into a gold film that was plated onto the surface of a glass sheet. These tiny grooves intersect at an angle to form a metallic grating. When illuminated by a laser, the device launches two tilted, plane surface waves which interfere constructively to create the non-diffracting beam.

"Our French colleagues did a beautiful experiment, using an ultrahigh-resolution microscope to image the needle-shaped beam propagating for a long distance across the gold surface," says Genevet.

Capasso's team hopes the finding will assist the development of more energy-efficient and powerful microprocessors.


'/>"/>

Contact: Caroline Perry
cperry@seas.harvard.edu
617-496-1351
Harvard University
Source:Eurekalert  

Related biology technology :

1. NxStage Extends Agreement to Supply Streamline Bloodlines, MasterGuard and Buttonhole Needle Technology to B. Braun
2. Breaking Study: ICU Medicals Tego® Needlefree Connector Proves More Cost Effective Than Traditional Central Venous Catheter Locks
3. Protein that helps tumor blood vessels mature could make cancer drugs more effective
4. Botanical compound could prove crucial to healing influenza
5. Gold nanoparticles could treat prostate cancer with fewer side effects than chemotherapy
6. Draper Device Could Help Pave Way Towards “Kidney-On-A-Chip” Development
7. Penn researchers study of phase change materials could lead to better computer memory
8. Research could lead to new drugs for major diseases
9. New twist on old chemical process could boost energy efficiency
10. Armored caterpillar could inspire new body armor
11. Nanocable could be big boon for energy storage
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Needle beam could eliminate signal loss in on-chip optics
(Date:6/22/2017)... , ... June 22, 2017 , ... ... leaders in designating infertility as a disease, bringing new hope for prospective parents ... their 2017 annual meeting to back the World Health Organization’s designation in hopes ...
(Date:6/22/2017)... ... ... The first human cell line HeLa, established in 1951, has entered cell ... human cell lines with HeLa cells were published. Until recently, cross-contamination and misidentification of ... associated with dramatic consequences for research. , In this educational webinar, which is ...
(Date:6/20/2017)... CT (PRWEB) , ... June 20, 2017 , ... ... today announced that the CTNext board of directors has formed a Higher Education ... a working group composed of institution presidents and other high-ranking representatives from 35 ...
(Date:6/20/2017)...  Kibow Biotech Inc., a pioneer in developing "Enteric ... a new patent covering a unique method for preventing ... and Trademark Office on May 23 rd 2017. ... Bio award in 2014 in San Diego, ... to chronic disease. Renadyl™, the first and only dietary ...
Breaking Biology Technology:
(Date:5/16/2017)... , May 16, 2017   Bridge Patient ... organizations, and MD EMR Systems , an ... partner for GE, have established a partnership to ... product and the GE Centricity™ products, including Centricity ... These new integrations will allow ...
(Date:4/19/2017)... The global military biometrics market ... by the presence of several large global players. The ... major players - 3M Cogent, NEC Corporation, M2SYS Technology, ... 61% of the global military biometric market in 2016. ... military biometrics market boast global presence, which has catapulted ...
(Date:4/13/2017)... April 13, 2017 UBM,s Advanced Design and ... will feature emerging and evolving technology through its 3D ... will run alongside the expo portion of the event ... and demonstrations focused on trending topics within 3D printing ... and manufacturing event will take place June 13-15, 2017 at ...
Breaking Biology News(10 mins):