Navigation Links
Nature study shows how molecules escape from the nucleus

September 15, 2010 (BRONX, NY) By constructing a microscope apparatus that achieves resolution never before possible in living cells, researchers at Albert Einstein College of Medicine of Yeshiva University have illuminated the molecular interactions that occur during one of the most important "trips" in all of biology: the journey of individual messenger Ribonucleic acid (RNA) molecules from the nucleus into the cytoplasm (the area between the nucleus and cell membrane) so that proteins can be made. The results, published in the September 15 online edition of Nature, mark a major advance in the use of microscopes for scientific investigation (microscopy). The findings could lead to treatments for disorders such as myotonic dystrophy in which messenger RNA gets stuck inside the nucleus of cells.

Robert Singer, Ph.D., professor and co-chair of anatomy and structural biology, professor of cell biology and neuroscience and co-director of the Gruss-Lipper Biophotonics Center at Einstein, is the study's senior author. His co-author, David Grnwald, is at the Kavli Institute of Nanoscience at Delft University of Technology, The Netherlands. Prior to their work, the limit of microscopy resolution was 200 nanometers (billionths of a meter), meaning that molecules closer than that could not be distinguished as separate entities in living cells. In this paper, the researchers improved that resolution limit by 10 fold, successfully differentiating molecules only 20 nanometers apart.

Protein synthesis is arguably the most important of all cellular processes. The instructions for making proteins are encoded in the Deoxyribonucleic acid (DNA) of genes, which reside on chromosomes in the nucleus of a cell. In protein synthesis, DNA instructions of a gene are transcribed, or copied, onto messenger RNA; these molecules of messenger RNA must then travel out of the nucleus and into the cytoplasm, where amino acids are linked together to form the specified proteins.

Molecules shuttling between the nucleus and cytoplasm are known to pass through protein complexes called nuclear pores. After tagging messenger RNA molecules with a yellow fluorescent protein (which appears green in the accompanying image) and tagging the nuclear pore with a red fluorescent protein, the researchers used high-speed cameras to film messenger RNA molecules as they traveled across the pores. The Nature paper reveals the dynamic and surprising mechanism by which nuclear pores "translocate" messenger RNA molecules from the nucleus into the cytoplasm: this is the first time their pore transport has been seen in living cells in real time.

"Up until now, we'd really had no idea how messenger RNA travels through nuclear pores," said Dr. Singer. "Researchers intuitively thought that the squeezing of these molecules through a narrow channel such as the nuclear pore would be the slow part of the translocation process. But to our surprise, we observed that messenger RNA molecules pass rapidly through the nuclear pores, and that the slow events were docking on the nuclear side and then waiting for release into the cytoplasm."

More specifically, Dr. Singer found that single messenger RNA molecules arrive at the nuclear pore and wait for 80 milliseconds (80 thousandths of a second) to enter; they then pass through the pore breathtakingly fastin just 5 milliseconds; finally, the molecules wait on the other side of the pore for another 80 milliseconds before being released into the cytoplasm.

The waiting periods observed in this study, and the observation that 10 percent of messenger RNA molecules sit for seconds at nuclear pores without gaining entry, suggest that messenger RNA could be screened for quality at this point.

"Researchers have speculated that messenger RNA molecules that are defective in some way, perhaps because the genes they're derived from are mutated, may be inspected and destroyed before getting into the cytoplasm or a short time later, and the question has been, 'Where might that surveillance be happening?'," said Dr. Singer. "So we're wondering if those messenger RNA molecules that couldn't get through the nuclear pores were subjected to a quality control mechanism that didn't give them a clean bill of health for entry."

In previous research, Dr. Singer studied myotonic dystrophy, a severe inherited disorder marked by wasting of the muscles and caused by a mutation involving repeated DNA sequences of three nucleotides. Dr. Singer found that in the cells of people with myotonic dystrophy, messenger RNA gets stuck in the nucleus and can't enter the cytoplasm. "By understanding how messenger RNA exits the nucleus, we may be able to develop treatments for myotonic dystrophy and other disorders in which messenger RNA transport is blocked," he said.


Contact: Kim Newman
Albert Einstein College of Medicine

Related biology technology :

1. Quantum computer a stage closer with silicon breakthrough, reports Nature journal
2. Study sheds light into the nature of embryonic stem cells
3. Muscular protein bond -- strongest yet found in nature
4. Nature parks can save species as climate changes
5. Sangamo BioSciences Announces Publication in Nature of the Use of Zinc Finger Nucleases to Accelerate Precision Trait Stacking in Commercial Crop Species
6. Cell Biosciences Announces Publication in Nature Medicine
7. Nature Medicine study shows Peregrines bavituximab can cure lethal virus infections
8. Nature Reviews Publishes Article About Jennerexs Multi-Mechanistic Cancer Therapeutic
9. Light-speed nanotech: Controlling the nature of graphene
10. Data Published in Nature Cell Biology Reveal Novel Function of Drug Target EpCAM in Cancer Cell Signalling
11. Research Published in Nature Medicine Shows Disruption of Chemokine Interactions Inhibits Atherosclerosis in Mice
Post Your Comments:
Related Image:
Nature study shows how molecules escape from the nucleus
(Date:11/24/2015)... Nov. 24, 2015  Asia-Pacific (APAC) holds the ... (CRO) market. The trend of outsourcing to low-cost ... but higher volume share for the region in ... however, margins in the CRO industry will improve. ... ( ), finds that the market ...
(Date:11/24/2015)... HILLS, N.J. (PRWEB) , ... November 24, 2015 , ... ... as the recipient of the 2016 USGA Green Section Award. Presented annually since 1961, ... golf through his or her work with turfgrass. , Clarke, of Iselin, ...
(Date:11/24/2015)... Nov. 24, 2015 Cepheid (NASDAQ: CPHD ... at the following conference, and invited investors to participate ...      Tuesday, December 1, 2015 at 11.00 a.m. ...      Tuesday, December 1, 2015 at 11.00 a.m. ... New York, NY      Tuesday, December ...
(Date:11/24/2015)... SAN DIEGO , Nov. 24, 2015 Halozyme Therapeutics, ... Jaffray Healthcare Conference in New York on ... Dr. Helen Torley , president and CEO, will provide a ... New York at 1:00 p.m. ET/10:00 a.m. ... communication and investor relations, will provide a corporate overview. --> ...
Breaking Biology Technology:
(Date:11/20/2015)... Connecticut , November 20, 2015 ... authentication company focused on the growing mobile commerce market ... CEO, Gino Pereira , was recently interviewed on ... interview will air on this weekend on Bloomberg ... Latin America . --> NXTD ) ("NXT-ID" ...
(Date:11/19/2015)... VIEW, Calif. , Nov. 19, 2015  Based ... market, Frost & Sullivan recognizes BIO-key with the 2015 ... Leadership. Each year, Frost & Sullivan presents this award ... product line catering to the needs of the market ... the product line meets and expands on customer base ...
(Date:11/19/2015)...  Although some 350 companies are actively involved in ... companies, according to Kalorama Information. These include Roche Diagnostics, Hologic, ... share of the 6.1 billion-dollar molecular testing market, according ... Molecular Diagnostic s .    ... by one company and only a handful of companies ...
Breaking Biology News(10 mins):