Navigation Links
Nature offers key lessons on harvesting solar power, says U of T chemistry professor
Date:9/23/2011

TORONTO, ON - Clean solutions to human energy demands are essential to our future. While sunlight is the most abundant source of energy at our disposal, we have yet to learn how to capture, transfer and store solar energy efficiently. According to University of Toronto chemistry professor Greg Scholes, the answers can be found in the complex systems at work in nature.

"Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules," said Scholes, the D.J. LeRoy Distinguished Professor at U of T. "The energy is stored fleetingly as vibrating electrons and then transferred to a suitable reactor. It is the same in biological systems. In photosynthesis, for example, antenna complexes comprised of chlorophyll capture sunlight and direct the energy to special proteins called reaction centres that help make oxygen and sugars. It is like plugging those proteins into a solar power socket."

In an article in Nature Chemistry to be published on September 23, Scholes and colleagues from several other universities examine the latest research in various natural antenna complexes. Using lessons learned from these natural phenomena, they provide a framework for how to design light harvesting systems that will route the flow of energy in sophisticated ways and over long distances, providing a microscopic "energy grid" to regulate solar energy conversion.

A key challenge is that the energy from sunlight is captured by coloured molecules called dyes or pigments, but is stored for only a billionth of a second. This leaves little time to route the energy from pigments to molecular machinery that produces fuel or electricity. How can we harvest sunlight and utilize its energy before it is lost?

"This is why natural photosynthesis is so inspiring," said Scholes. "More than 10 million billion photons of light strike a leaf each second. Of these, almost every red-coloured photon is captured by chlorophyll pigments which feed plant growth." Learning the workings of these natural light-harvesting systems fostered a vision, proposed by Scholes and his co-authors, to design and demonstrate molecular "circuitry" that is 10 times smaller than the thinnest electrical wire in computer processors. These energy circuits could control, regulate, direct and amplify raw solar energy which has been captured by human-made pigments, thus preventing the loss of precious energy before it is utilized.

Last year, Scholes led a team that showed that marine algae, a normally functioning biological system, uses quantum mechanics in order to optimize photosynthesis, a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun.


'/>"/>

Contact: Kim Luke
kim.luke@utoronto.ca
416-978-4352
University of Toronto
Source:Eurekalert  

Related biology technology :

1. Jennerex Publishes Clinical Data in Journal, Nature, Demonstrating Intravenous Delivery of Multi-Mechanistic Cancer-Targeted Oncolytic Poxvirus JX-594 to Tumors
2. Nature of bonding determines thermal conductivity
3. Search for advanced materials aided by discovery of hidden symmetries in nature
4. Nature article focuses on tinnitus treatment
5. Singapore consortium learns from nature to produce new chemical-free, anti-bacteria plastic skins
6. TU scientists in Nature: Better control of building blocks for quantum computer
7. Nature publishes results of gene therapy treatment in phase 1/2 beta-thalassemia study
8. Nature study shows how molecules escape from the nucleus
9. Quantum computer a stage closer with silicon breakthrough, reports Nature journal
10. Study sheds light into the nature of embryonic stem cells
11. Muscular protein bond -- strongest yet found in nature
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nature offers key lessons on harvesting solar power, says U of T chemistry professor
(Date:4/28/2017)... ... April 28, 2017 , ... KCAS ... validated a 0.2 ng/mL lower limit (LLOQ) assay for nicotine and two key ... assay, the ultra-low trace nicotine assay meets additional needs of tobacco industry that ...
(Date:4/27/2017)... ... April 27, 2017 , ... This month ... (eConsent) solution that simplifies research studies, accelerates study startup, and improves participant engagement. ... Consent™ is the first and only IRB-integrated eConsent solution . , “Our ...
(Date:4/27/2017)... ... April 27, 2017 , ... Volunteers supported by SPIE, ... and industry professionals in visiting U.S. Congressional offices in Washington, D.C., yesterday to ... photonics industry. , This year, National Photonics Initiative (NPI) Congressional Visits ...
(Date:4/26/2017)... (PRWEB) , ... April 26, 2017 , ... ... has teamed up with NASA to showcase the future of deep space exploration ... System (SLS) rocket and Orion spacecraft and includes a guest appearance by former ...
Breaking Biology Technology:
(Date:3/22/2017)... , March 21, 2017 Optimove ... used by retailers such as 1-800-Flowers and AdoreMe, ... — Product Recommendations and Replenishment. Using Optimove,s machine learning ... personalized product and replenishment recommendations to their customers ... on predictions of customer intent drawn from a ...
(Date:3/20/2017)... At this year,s CeBIT Chancellor Dr. Angela Merkel visited ... to the DERMALOG stand together with the Japanese Prime Minster Shinzo Abe. ... the largest German biometrics company the two government leaders could see the ... well as DERMALOG´s multi-biometrics system.   Continue Reading ... ...
(Date:3/16/2017)... 2017 CeBIT 2017 - Against identity fraud with DERMALOG solutions "Made ... ... Used combined in one project, multi-biometric solutions provide a crucial contribution against identity ... Used combined in one project, multi-biometric ... ...
Breaking Biology News(10 mins):