Navigation Links
Nature offers key lessons on harvesting solar power, says U of T chemistry professor

TORONTO, ON - Clean solutions to human energy demands are essential to our future. While sunlight is the most abundant source of energy at our disposal, we have yet to learn how to capture, transfer and store solar energy efficiently. According to University of Toronto chemistry professor Greg Scholes, the answers can be found in the complex systems at work in nature.

"Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules," said Scholes, the D.J. LeRoy Distinguished Professor at U of T. "The energy is stored fleetingly as vibrating electrons and then transferred to a suitable reactor. It is the same in biological systems. In photosynthesis, for example, antenna complexes comprised of chlorophyll capture sunlight and direct the energy to special proteins called reaction centres that help make oxygen and sugars. It is like plugging those proteins into a solar power socket."

In an article in Nature Chemistry to be published on September 23, Scholes and colleagues from several other universities examine the latest research in various natural antenna complexes. Using lessons learned from these natural phenomena, they provide a framework for how to design light harvesting systems that will route the flow of energy in sophisticated ways and over long distances, providing a microscopic "energy grid" to regulate solar energy conversion.

A key challenge is that the energy from sunlight is captured by coloured molecules called dyes or pigments, but is stored for only a billionth of a second. This leaves little time to route the energy from pigments to molecular machinery that produces fuel or electricity. How can we harvest sunlight and utilize its energy before it is lost?

"This is why natural photosynthesis is so inspiring," said Scholes. "More than 10 million billion photons of light strike a leaf each second. Of these, almost every red-coloured photon is captured by chlorophyll pigments which feed plant growth." Learning the workings of these natural light-harvesting systems fostered a vision, proposed by Scholes and his co-authors, to design and demonstrate molecular "circuitry" that is 10 times smaller than the thinnest electrical wire in computer processors. These energy circuits could control, regulate, direct and amplify raw solar energy which has been captured by human-made pigments, thus preventing the loss of precious energy before it is utilized.

Last year, Scholes led a team that showed that marine algae, a normally functioning biological system, uses quantum mechanics in order to optimize photosynthesis, a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun.


Contact: Kim Luke
University of Toronto

Related biology technology :

1. Jennerex Publishes Clinical Data in Journal, Nature, Demonstrating Intravenous Delivery of Multi-Mechanistic Cancer-Targeted Oncolytic Poxvirus JX-594 to Tumors
2. Nature of bonding determines thermal conductivity
3. Search for advanced materials aided by discovery of hidden symmetries in nature
4. Nature article focuses on tinnitus treatment
5. Singapore consortium learns from nature to produce new chemical-free, anti-bacteria plastic skins
6. TU scientists in Nature: Better control of building blocks for quantum computer
7. Nature publishes results of gene therapy treatment in phase 1/2 beta-thalassemia study
8. Nature study shows how molecules escape from the nucleus
9. Quantum computer a stage closer with silicon breakthrough, reports Nature journal
10. Study sheds light into the nature of embryonic stem cells
11. Muscular protein bond -- strongest yet found in nature
Post Your Comments:
Related Image:
Nature offers key lessons on harvesting solar power, says U of T chemistry professor
(Date:11/24/2015)... ... ... The United States Golf Association (USGA) today announced Dr. Bruce Clarke, of ... since 1961, the USGA Green Section Award recognizes an individual’s distinguished service to the ... of Iselin, N.J., is an extension specialist of turfgrass pathology in the department of ...
(Date:11/24/2015)... Worcester, Mass. (PRWEB) , ... November 24, 2015 ... ... need to maintain healthy metabolism. But unless it is bound to proteins, copper ... Institutes of Health (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a ...
(Date:11/24/2015)... 24, 2015 --> ... report "Oligonucleotide Synthesis Market by Product & Services (Primer, ... Diagnostic, DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic ... the market is expected to reach USD 1,918.6 Million ... a CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... , November 24, 2015 ... recent market research report released by Transparency Market Research, ... expand at a CAGR of 17.5% during the period ... Testing Market - Global Industry Analysis, Size, Volume, Share, ... global non-invasive prenatal testing market to reach a valuation ...
Breaking Biology Technology:
(Date:11/16/2015)... SAN JOSE, Calif. , Nov 16, 2015 ... leading developer of human interface solutions, today announced ... new Synaptics TouchView ™ touch controller and ... the architectural revolution of smartphones. These new TDDI ... and include TD4100 (HD resolution), TD4302 (WQHD resolution), ...
(Date:11/10/2015)... Nov. 10, 2015  In this report, ... basis of product, type, application, disease indication, ... this report are consumables, services, software. The ... safety biomarkers, efficacy biomarkers, and validation biomarkers. ... are diagnostics development, drug discovery and development, ...
(Date:11/2/2015)... PARK, Calif. , Nov. 2, 2015  SRI ... $9 million to provide preclinical development services to the ... the contract, SRI will provide scientific expertise, modern testing ... wide variety of preclinical pharmacology and toxicology studies to ... --> The PREVENT Cancer Drug Development ...
Breaking Biology News(10 mins):