Navigation Links
Nanowires have the power to revolutionize solar energy
Date:4/8/2013

Imagine a solar panel more efficient than today's best solar panels, but using 10 000 times less material. This is what EPFL researchers expect given recent findings on these tiny filaments called nanowires. Solar technology integrating nanowires could capture large quantities of light and produce energy with incredible efficiency at a much lower cost. This technology is possibly the future for powering microchips and the basis for a new generation of solar panels.

Despite their size, nanowires have tremendous potential for energy production. "These nanowires capture much more light than expected," says Anna Fontcuberta i Morral about her research, published on 24 March 2013 in Nature Photonics.

Nanowires are extremely tiny filamentsin this case able to capture lightwith a diameter that measures tens to hundreds of nanometers, where a nanometer is one millionth of a millimeter. These miniscule wires are up to 1000 times smaller than the diameter of human hair, or comparable in diameter to the size of viruses.

When equipped with the right electronic properties, the nanowire becomes a tiny solar cell, transforming sunlight into electric current. Anna Fontcuberta i Morral and her team built a nanowire solar cell out of gallium arsenide, a material which is better at converting light into power than silicon. They found that it actually collects more light than the usual flat solar cellup to 12 times moreand more light means more energy.

The nanowire standing vertically essentially acts like a very efficient light funnel. Even though the nanowire is only a few hundred nanometers in diameter, it absorbs light as though it were 12 times bigger. In other words, it has a greater field of vision than expected.

Fontcuberta's prototype is already almost 10% more efficient at transforming light into power than allowed, in theory, for conventional single material solar panels. Furthermore, optimizing the dimensions of the nanowire, improving the quality of the gallium arsenide and using better electrical contacts to extract the current could increase the prototype's efficiency.

Arrays of nanowire solar cells offer new prospects for energy production. This study suggests that an array of nanowires may attain 33% efficiency, in practice, whereas commercial (flat) solar panels are now only up to 20% efficient. Also, arrays of nanowires would use at least 10 000 times less gallium arsenide, allowing for industrial use of this costly material. Translating this into dollars for gallium arsenide, the cost would only be $10 per square meter instead of $100 000.

Free to the engineer's imagination to mount these nanowires onto a variety of substrate panels, be it lightweight, flexible or designed to withstand the harshest of conditions. In a world where energy consumption is on the rise, these nanowires may one day power everything from your favorite gadget to space missions to Mars.


'/>"/>

Contact: Hillary Sanctuary
hillary.sanctuary@epfl.ch
41-797-034-809
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert

Related biology technology :

1. Using single quantum dots to probe nanowires
2. Nano machine shop shapes nanowires, ultrathin films
3. Researchers create highly conductive and elastic conductors using silver nanowires
4. Pitt researchers coax gold into nanowires
5. Stanford engineers weld nanowires with light
6. Voltage increases up to 25 percent observed in closely packed nanowires at Sandia Labs
7. China Industry Reports: 2013 Research on Swine Industry Chain, Human Tetanus Immunoglobulin, Power Energy Storage Battery and Wind Power Lubricating Grease at ReportsnReports.com
8. NDIS Approval of Promega PowerPlex® Fusion System Assists Laboratories in Meeting Evolving Standards
9. Self-assembled nanostructures enable a low-power phase-change memory for mobile electronic devices
10. Breaking the final barrier: Room-temperature electrically powered nanolasers
11. HDI Launches New More Economical Lab ShockWave Power Cavitation Reactor
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/13/2017)... DUBLIN , Jan 13, 2017 Research and ... report to their offering. ... The global biopolymers market to grow at a CAGR of 16.83% ... scenario and the growth prospects of the global biopolymers market for 2017-2021. ... the sale of sales of biopolymer products. The report also includes a ...
(Date:1/13/2017)... ... 13, 2017 , ... FireflySci, in response to several customers’ ... solutions for measurements where traditional cuvette applications are not convenient. For instance, a ... sample that would not fit into a typical cuvette inside a spectrophotometer. In ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... times capable of performing routine electrochemical biosensing has increased dramatically. Primarily driven ... sensitive detection and quantification of various analytes in complex samples. ...
(Date:1/12/2017)... 2017 The Energy and Resources ... for producing mycorrhizae. The Centre for Mycorrhizal Research at ... mycorrhizae and developed a technology that eventually produces mycorrhizae ... ... The TERI facility has a production capacity of ...
Breaking Biology Technology:
(Date:12/15/2016)... , Dec. 15, 2016   WaferGen Bio-systems, ... held genomics technology company, announced today that on December ... Qualifications Department of The Nasdaq Stock Market LLC which ... bid price of WaferGen,s common stock had been at ... WaferGen has regained compliance with Listing Rule 5550(a)(2) of ...
(Date:12/15/2016)... Advancements in biometrics will radically ... wellbeing (HWW), and security of vehicles by ... vehicles begin to feature fingerprint recognition, iris ... monitoring, brain wave monitoring, stress detection, fatigue ... detection. These will be driven by built-in, ...
(Date:12/15/2016)... Dec. 14, 2016 "Increase in mobile transactions ... The mobile biometrics market is expected to grow from ... by 2022, at a CAGR of 29.3% between 2016 ... as the growing demand for smart devices, government initiatives, ... "Software component is expected to grow at a ...
Breaking Biology News(10 mins):