Navigation Links
'Nanowiggles:' Scientists discover graphene nanomaterials with tunable functionality in electronics

Troy, N.Y. Electronics are getting smaller and smaller, flirting with new devices at the atomic scale. However, many scientists predict that the shrinking of our technology is reaching an end. Without an alternative to silicon-based technologies, the miniaturization of our electronics will stop. One promising alternative is graphene the thinnest material known to man. Pure graphene is not a semiconductor, but it can be altered to display exceptional electrical behavior. Finding the best graphene-based nanomaterials could usher in a new era of nanoelectronics, optics, and spintronics (an emerging technology that uses the spin of electrons to store and process information in exceptionally small electronics).

Scientists at Rensselaer Polytechnic Institute have used the capabilities of one of the world's most powerful university-based supercomputers, the Rensselaer Center for Nanotechnology Innovations (CCNI), to uncover the properties of a promising form of graphene, known as graphene nanowiggles. What they found was that graphitic nanoribbons can be segmented into several different surface structures called nanowiggles. Each of these structures produces highly different magnetic and conductive properties. The findings provide a blueprint that scientists can use to literally pick and choose a graphene nanostructure that is tuned and customized for a different task or device. The work provides an important base of knowledge on these highly useful nanomaterials.

The findings were published in the journal Physical Review Letters in a paper titled "Emergence of Atypical Properties in Assembled Graphene Nanoribbons."

"Graphene nanomaterials have plenty of nice properties, but to date it has been very difficult to build defect-free graphene nanostructures. So these hard-to-reproduce nanostructures created a near insurmountable barrier between innovation and the market," said Vincent Meunier, the Gail and Jeffrey L. Kodosky '70 Constellation Professor of Physics, Information Technology, and Entrepreneurship at Rensselaer. "The advantage of graphene nanowiggles is that they can easily and quickly be produced very long and clean." Nanowiggles were only recently discovered by a group led by scientists at EMPA, Switzerland. These particular nanoribbons are formed using a bottom-up approach, since they are chemically assembled atom by atom. This represents a very different approach to the standard graphene material design process that takes an existing material and attempts to cut it into a new structure. The process often creates a material that is not perfectly straight, but has small zigzags on its edges.

Meunier and his research team saw the potential of this new material. The nanowiggles could be easily manufactured and modified to display exceptional electrical conductive properties. Meunier and his team immediately set to work to dissect the nanowiggles to better understand possible future applications.

"What we found in our analysis of the nanowiggles' properties was even more surprising than previously thought," Meunier said.

The scientists used computational analysis to study several different nanowiggle structures. The structures are named based on the shape of their edges and include armchair, armchair/zigzag, zigzag, and zigzag/armchair. All of the nanoribbon-edge structures have a wiggly appearance like a caterpillar inching across a leaf. Meunier named the four structures nanowiggles and each wiggle produced exceptionally different properties.

They found that the different nanowiggles produced highly varied band gaps. A band gap determines the levels of electrical conductivity of a solid material. They also found that different nanowiggles exhibited up to five highly varied magnetic properties. With this knowledge, scientists will be able to tune the bandgap and magnetic properties of a nanostructure based on their application, according to Meunier.

Meunier would like the research to inform the design of new and better devices. "We have created a roadmap that can allow for nanomaterials to be easily built and customized for applications from photovoltaics to semiconductors and, importantly, spintronics," he said.

By using CCNI, Meunier was able to complete these sophisticated calculations in a few months.

"Without CCNI, these calculations would still be continuing a year later and we would not yet have made this exciting discovery. Clearly this research is an excellent example illustrating the key role of CCNI in predictive fundamental science," he said.

Contact: Gabrielle DeMarco
Rensselaer Polytechnic Institute

Related biology technology :

1. Sheffield scientists shine a light on the detection of bacterial infection
2. Singapore scientists lead human embryonic stem cell study
3. Scientists defuse the Vietnam time bomb
4. Scientists carve nanowires out of ultrananocrystalline diamond thin films
5. Berkeley Lab scientists develop new tool for the study of spatial patterns in living cells
6. Shaken, not stirred: Berkeley lab scientists spy molecular maneuvers
7. Using new technique, scientists uncover a delicate magnetic balance for superconductivity
8. Scientists create computing building blocks from bacteria and DNA
9. Scientists determine alternative insecticide dramatically reduces malaria transmission
10. Scientists take up golf to prove long-standing theory of cell stickiness
11. Sheffield scientists shine a light on the detection of bacterial infection
Post Your Comments:
Related Image:
'Nanowiggles:' Scientists discover graphene nanomaterials with tunable functionality in electronics
(Date:11/25/2015)... , November 25, 2015 ... Report is a professional and in-depth study on ...      (Logo: ) , ... the industry including definitions, classifications, applications and industry ... for the international markets including development trends, competitive ...
(Date:11/24/2015)... , Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: ... in New York on Wednesday, December 2 ... Torley , president and CEO, will provide a corporate overview. ... York at 1:00 p.m. ET/10:00 a.m. PT . ... relations, will provide a corporate overview. --> th ...
(Date:11/24/2015)... -- Clintrax Global, Inc., a worldwide provider of clinical research services headquartered ... the company has set a new quarterly earnings record in Q3 ... posted for Q3 of 2014 to Q3 of 2015.   ... , with the establishment of an Asia-Pacific ... United Kingdom and Mexico , with ...
(Date:11/24/2015)... 2015 --> ... released by Transparency Market Research, the global non-invasive prenatal ... of 17.5% during the period between 2014 and 2022. ... Industry Analysis, Size, Volume, Share, Growth, Trends and Forecast ... market to reach a valuation of US$2.38 bn by ...
Breaking Biology Technology:
(Date:11/9/2015)... 2015 ... "Global Law Enforcement Biometrics Market 2015-2019" ... ) has announced the addition ... Market 2015-2019" report to their offering. ... ) has announced the addition of ...
(Date:11/2/2015)... Calif. , Nov. 2, 2015  SRI International ... million to provide preclinical development services to the National ... contract, SRI will provide scientific expertise, modern testing and ... variety of preclinical pharmacology and toxicology studies to evaluate ... --> The PREVENT Cancer Drug Development Program ...
(Date:10/29/2015)... 2015 Daon, a global leader in mobile ... a new version of its IdentityX Platform , ... America have already installed IdentityX v4.0 and ... FIDO UAF certified server component as an ... FIDO features. These customers include some of the largest ...
Breaking Biology News(10 mins):