Navigation Links
Nanoscale whiskers from sea creatures could grow human muscle tissue
Date:3/11/2011

Nanoscale whiskers from sea creatures could grow human muscle tissue

Minute whiskers of nanoscale dimensions taken from sea creatures could hold the key to creating working human muscle tissue, University of Manchester researchers have discovered.

Scientists have found that cellulose from tunicates, commonly known as sea squirts, can influence the behaviour of skeletal muscle cells in the laboratory.

These nanostructures are several thousand times smaller than muscle cells and are the smallest physical feature found to cause cell alignment.

Alignment is important since a lot of tissue in the body, including muscle, contains aligned fibres which give it strength and stiffness.

Cellulose is a polysaccharide a long chain of sugars joined together usually found in plants and is the main component of paper and certain textiles such as cotton.

It is already being used for a number of different medical applications, including wound dressings, but this is the first time it has been proposed for creating skeletal muscle tissue.

Tunicates grow on rocks and man-made structures in coastal waters around the world.

Cellulose extracted from tunicates is particularly well suited for making muscle tissue due to its unique properties.

University of Manchester academics Dr Stephen Eichhorn and Dr Julie Gough, working with PhD student James Dugan, chemically extract the cellulose in the form of nanowhiskers. One nanometre is one billionth of a metre and these minute whiskers are only 10s of nanometres wide far thinner than a human hair.

When aligned and parallel to each other, they cause rapid muscle cell alignment and fusion.

The method is both simple and relatively quick, which could lead to doctors and scientists having the ability to create the normal aligned architecture of skeletal muscle tissue.

This tissue could be used to help repair existing muscle or even grow muscle from scratch.

Creating artificial tissue which can be used to replace damaged or diseased human muscles could revolutionise healthcare, and be of huge benefit to millions of people all over the world.

Dr Eichhorn thinks the cellulose extracted from the creatures could lead to a significant medical advancement. He added: "Although it is quite a detailed chemical process, the potential applications are very interesting.

"Cellulose is being looked at very closely around the world because of its unique properties, and because it is a renewable resource, but this is the first time that it has been used for skeletal muscle tissue engineering applications.

"There is potential for muscle precision engineering, but also for other architecturally aligned structures such as ligaments and nerves."

PhD student James Dugan has become the first UK student to win the American Chemical Society's Cellulose and Renewable Material Division award for his work on nanowhiskers.


'/>"/>

Contact: Daniel Cochlin
daniel.cochlin@manchester.ac.uk
0044-161-275-8387
University of Manchester
Source:Eurekalert

Related biology technology :

1. Boston College receives W.M. Keck Foundation funding for nanoscale optical microscope
2. Columbia University researchers use nanoscale transistors to study single-molecule interactions
3. Structural distortions emerge from nothing at the nanoscale
4. Nanoscale probe reveals interactions between surfaces and single molecules
5. Pitt-led team develops nanoscale light sensor compatible with Etch-a-Sketch nanoelectronic platform
6. Electron billiards in nanoscale circuits
7. ORNL scientists reveal battery behavior at the nanoscale
8. NASA funds development of nanoscale materials for high energy density lithium-ion batteries
9. Nanoscale DNA sequencing could spur revolution in personal health care
10. High definition diagnostic ultrasonics on the nanoscale
11. New nanoscale transistors allow sensitive probing inside cells
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/30/2016)... SEATTLE , Nov. 30, 2016  The ... Allen Cell Collection: the first publicly available collection ... stem cells that target key cellular structures with ... Medical Research, these powerful tools are a crucial ... cells to better understand what makes human cells ...
(Date:11/30/2016)... November 2016   Merck , ein ... Unterzeichnung einer Reihe von Vereinbarungen mit Evotec ... AG Screeningleistungen für Mercks Palette genetischer Reagenzien ... auf diese Bibliotheken in Kombination mit Evotecs ... Weg zur Ermittlung und Erforschung neuer Arzneimitteltargets.    ...
(Date:11/30/2016)... Woburn, MA (PRWEB) , ... November 30, 2016 ... ... broadband light sources for advanced technology applications, introduces the 5th generation, ultra-bright, Laser-Driven ... the highly successful Laser-Driven Light Source (LDLS™) technology, the EQ-77 offers higher radiance ...
(Date:11/30/2016)... ... 30, 2016 , ... ProMIS Neurosciences (“ProMIS” or the “Company”), ... today announced that all five of its validated monoclonal antibody (mAb) therapeutic candidates ... prion-like forms of Amyloid beta (Aß) in vitro. , “We previously demonstrated that ...
Breaking Biology Technology:
(Date:6/22/2016)... 2016   Acuant , the leading ... has partnered with RightCrowd ® to ... Management, Self-Service Kiosks and Continuous Workforce Assurance. ... functional enhancements to existing physical access control ... with an automated ID verification and authentication ...
(Date:6/16/2016)... , June 16, 2016 ... size is expected to reach USD 1.83 billion ... Grand View Research, Inc. Technological proliferation and increasing ... applications are expected to drive the market growth. ... , The development of advanced multimodal ...
(Date:6/7/2016)...  Syngrafii Inc. and San Antonio Credit Union ... integrating Syngrafii,s patented LongPen™ eSignature "Wet" solution into ... result in greater convenience for SACU members and ... existing document workflow and compliance requirements. ... Highlights: ...
Breaking Biology News(10 mins):