Navigation Links
Nanoscale magnetic media diagnostics by rippling spin waves
Date:4/3/2012

Memory devices based on magnetism are one of the core technologies of the computing industry, and engineers are working to develop new forms of magnetic memory that are faster, smaller, and more energy efficient than today's flash and SDRAM memory. They now have a new tool developed by a team from the National Institute of Standards and Technology (NIST), the University of Maryland Nanocenter and the Royal Institute of Technology in Swedena method to detect defects in magnetic structures as small as a tenth of a micrometer even if the region in question is buried inside a multilayer electronic device.*

The technique demonstrated at the NIST Center for Nanoscale Technology (CNST) builds on work by researchers at the Ohio State University.** The idea is to trap and image oscillating perturbations of a magnetic field"spin waves"in a thin film. Trapped spin waves provide scientists with a powerful new tool to nondestructively measure the properties of magnetic materials and search for nanoscale defects that could or have caused memory failures, especially in multilayer magnetic systems like a typical hard drive, where defects could be buried beneath the surface.

According to NIST researcher Robert McMichael, when left alone, the material's magnetization is like the surface of a pond on a windless day. The pond is comprised of smaller magnetic moments that come with the quantum mechanical "spin" of electrons. Tap the surface of the pond with a piece of driftwood, or microwaves in this case, and the surface will begin to ripple with spin waves as the microwave energy jostles the spins, which, in turn, jostle their neighbors.

"The trick we play is to tune the microwaves to a frequency just outside the band where the spin waves can propagateexcept right under our magnetic probe tip," says McMichael. "It's like the pond is frozen except for a little melted spot that we can move around to check magnetic properties at different spots in the sample."

The trapped spin waves are disturbed by defects in the material, and this effect allows the defects to be characterized on 100 nm length scales.

Previous work had shown this same effect in magnetic spins that were oriented perpendicular to the magnetic film surface, meaning that the individual spins coupled strongly with their neighbors, which limited the resolution. This new work adds the extra feature that the magnetic spins are aligned in plane with one another and are not as tightly coupled. This setup is not only more representative of how many magnetic devices would be structured, but also allows for tighter focusing and better resolution.


'/>"/>

Contact: Mark Esser
mark.esser@nist.gov
301-975-8735
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. Solved: The mystery of the nanoscale crop circles
2. Magnetic actuation enables nanoscale thermal analysis
3. ORNL experiments prove nanoscale metallic conductivity in ferroelectrics
4. Carving at the nanoscale
5. Penn and Brown researchers demonstrate earthquake friction effect at the nanoscale
6. Wideband Antenna for Novelda Nanoscale Impulse Radar
7. Stanford engineers create nanoscale nonlinear light source
8. $13-million NSF center to explore new ways to manipulate light at the nanoscale
9. Nanoscale spin waves can replace microwaves
10. ONR funds study of nanoscale wetting dynamics of superhydrophobic surfaces at Stevens
11. Tiny wires change behavior at nanoscale
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanoscale magnetic media diagnostics by rippling spin waves
(Date:2/3/2016)... N.J. , Feb. 3, 2016 ... totaling more than $1 million for researchers in ... working on health-related research that demonstrates exciting potential. ... round of funding for the New Jersey Health Foundation ... faculty members at these educational institutions— Princeton University, ...
(Date:2/3/2016)... ... 03, 2016 , ... ProMIS Neurosciences is currently in the ... misfolded, propagating strains of Amyloid beta involved in Alzheimer’s disease. The Company plans ... Following on from the first misfolded Amyloid beta target announced on Nov. 12, ...
(Date:2/3/2016)... ... 03, 2016 , ... Resilinc released online today ... nearly 750 unique supply chain notifications and alerts generated by its EventWatch ... risk management practitioners subscribe to the EventWatch service to receive early warnings and ...
(Date:2/3/2016)... Feb. 3, 2016  Today, Symphony Technology Group (STG) ... , a leading provider of primary research and analytics-based ... IMS Health , a global information and technology services ... and technologies will be integrated into IMS Health to ... market research capabilities. ...
Breaking Biology Technology:
(Date:1/18/2016)... , Jan. 18, 2016  Extenua Inc., a ... simplifies the use and access of ubiquitous on-premise ... partnership with American Cyber.  ... experience leading transformational C4ISR and Cyber initiatives in ... the latest proven technology solutions," said Steve ...
(Date:1/11/2016)... 2016 Synaptics Incorporated (NASDAQ: SYNA ), ... that its ClearPad ® TouchView ™ 4300 ... separate categories in the 8 th Annual Mobile ... Breakthrough. The Synaptics ® TDDI solution enables faster ... thinner devices, brighter displays and borderless designs. ...
(Date:1/7/2016)... YORK , Jan. 7, 2016 This ... regional markets for biometric technologies and devices, identifying newer ... market for various types of biometric devices. Includes forecast ... to: Identify newer markets and explore the expansion ... biometric devices. Examine each type of biometric technology, determine ...
Breaking Biology News(10 mins):