Navigation Links
Nanoscale DNA sequencing could spur revolution in personal health care
Date:8/16/2010

In experiments with potentially broad health care implications, a research team led by a University of Washington physicist has devised a method that works at a very small scale to sequence DNA quickly and relatively inexpensively.

That could open the door for more effective individualized medicine, for example providing blueprints of genetic predispositions for specific conditions and diseases such as cancer, diabetes or addiction.

"The hope is that in 10 years people will have all their DNA sequenced, and this will lead to personalized, predictive medicine," said Jens Gundlach, a UW physics professor and lead author of a paper describing the new technique published the week of Aug. 16 in the Proceedings of the National Academy of Sciences.

The technique creates a DNA reader that combines biology and nanotechnology using a nanopore taken from Mycobacterium smegmatis porin A. The nanopore has an opening 1 billionth of a meter in size, just large enough to measure a single strand of DNA as it passes through.

The scientists placed the pore in a membrane surrounded by potassium-chloride solution. A small voltage was applied to create an ion current flowing through the nanopore, and the current's electrical signature changed depending on the nucleotides traveling through the nanopore. Each of the nucleotides that are the essence of DNA cytosine, guanine, adenine and thymine produced a distinctive signature.

The team had to solve two major problems. One was to create a short and narrow opening just large enough to allow a single strand of DNA to pass through the nanopore and for only a single DNA molecule to be in the opening at any time. Michael Niederweis at the University of Alabama at Birmingham modified the M. smegmatis bacterium to produce a suitable pore.

The second problem, Gundlach said, was that the nucleotides flowed through the nanopore at a rate of one every millionth of a second, far too fast to sort out the signal from each DNA molecule. To compensate, the researchers attached a section of double-stranded DNA between each nucleotide they wanted to measure. The second strand would briefly catch on the edge of the nanopore, halting the flow of DNA long enough for the single nucleotide to be held within the nanopore DNA reader. After a few milliseconds, the double-stranded section would separate and the DNA flow continued until another double strand was encountered, allowing the next nucleotide to be read.

The delay, though measured in thousandths of a second, is long enough to read the electrical signals from the target nucleotides, Gundlach said.

"We can practically read the DNA sequence from an oscilloscope trace," he said.

Besides Gundlach and Niederweiss, other authors are Ian Derrington, Tom Butler, Elizabeth Manrao and Marcus Collins of the UW; and Mikhail Pavlenok at Alabama-Birmingham.

The work was funded by the National Institutes of Health and its National Human Genome Research Institute as part of a program to create technology to sequence a human genome for $1,000 or less. That program began in 2004, when it cost on the order of $10 million to sequence a human-sized genome.

The new research is a major step toward achieving DNA sequencing at a cost of $1,000 or less.

"Our experiments outline a novel and fundamentally very simple sequencing technology that we hope can now be expanded into a mechanized process," Gundlach said.


'/>"/>

Contact: Vince Stricherz
vinces@uw.edu
206-543-2580
University of Washington
Source:Eurekalert

Related biology technology :

1. High definition diagnostic ultrasonics on the nanoscale
2. New nanoscale transistors allow sensitive probing inside cells
3. Researchers develop ultra-simple method for creating nanoscale gold coatings
4. Superconductors on the nanoscale
5. Penn material scientists turn light into electrical current using a golden nanoscale system
6. Small optical force can budge nanoscale objects
7. LANL Roadrunner simulates nanoscale material failure
8. New material for nanoscale computer chips
9. Breaking barriers with nanoscale lasers
10. Graphene may have advantages over copper for IC interconnects at the nanoscale
11. New rotors could help develop nanoscale generators
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/21/2017)... ... April 21, 2017 , ... The University of Connecticut, ... funding to three startups through the UConn Innovation Fund. The $1.5 million UConn ... affiliated with UConn. , The UConn Innovation Fund provides investments of up to ...
(Date:4/21/2017)... ... 21, 2017 , ... Frederick Innovative Technology Center, Inc. (FITCI), ... businesses, recently earned a $77,518 grant from the Rural Maryland Council (RMC) to ... is Frederick’s first incubator. A non-profit corporation, FITCI is a public-private partnership of ...
(Date:4/20/2017)... CALIFORNIA (PRWEB) , ... April 20, 2017 , ... ... firm for the life sciences and healthcare industries, is pleased to announce Holger ... new established USDM subsidiary “USDM Europe GmbH” based in Germany. , Braemer is ...
(Date:4/20/2017)... ... April 20, 2017 , ... ... advanced technology applications, announced today that Chief Executive Officer (CEO) Debbie Gustafson has ... is the global industry association connecting the electronics manufacturing supply chain. The ...
Breaking Biology Technology:
(Date:4/13/2017)... MONICA, Calif. , April 13, 2017 ... New York will feature emerging and evolving ... Summits. Both Innovation Summits will run alongside the expo ... of speaker sessions, panels and demonstrations focused on trending ... coast,s largest advanced design and manufacturing event will take ...
(Date:4/11/2017)... April 11, 2017 No two people ... at the New York University Tandon School of ... have found that partial similarities between prints are ... in mobile phones and other electronic devices can ... The vulnerability lies in the fact that fingerprint-based ...
(Date:4/5/2017)... 5, 2017 Today HYPR Corp. , ... server component of the HYPR platform is officially ... end-to-end security architecture that empowers biometric authentication across Fortune ... already secured over 15 million users across the financial ... connected home product suites and physical access represent a ...
Breaking Biology News(10 mins):