Navigation Links
Nanoparticles seek and destroy glioblastoma in mice

LA JOLLA, Calif., October 3, 2011 Glioblastoma is one of the most aggressive forms of brain cancer. Rather than presenting as a well-defined tumor, glioblastoma will often infiltrate the surrounding brain tissue, making it extremely difficult to treat surgically or with chemotherapy or radiation. Likewise, several mouse models of glioblastoma have proven completely resistant to all treatment attempts. In a new study, a team led by scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Salk Institute for Biological Studies developed a method to combine a tumor-homing peptide, a cell-killing peptide, and a nanoparticle that both enhances tumor cell death and allows the researchers to image the tumors. When used to treat mice with glioblastoma, this new nanosystem eradicated most tumors in one model and significantly delayed tumor development in another. These findings were published the week of October 3 in the Proceedings of the National Academy of Sciences of the USA.

"This is a unique nanosystem for two reasons. First, linking the cell-killing peptide to nanoparticles made it possible for us to deliver it specifically to tumors, virtually eliminating the killer peptide's toxicity to normal tissues. Second, ordinarily researchers and clinicians are happy if they are able to deliver more drugs to a tumor than to normal tissues. We not only accomplished that, but were able to design our nanoparticles to deliver the killer peptide right where it actsthe mitochondria, the cell's energy-generating center," said Erkki Ruoslahti, M.D., Ph.D., senior author of the study and distinguished professor in both Sanford-Burnham's NCI-designated Cancer Center in La Jolla and the Center for Nanomedicine, a Sanford-Burnham collaboration with the University of California, Santa Barbara.

The nanosystem developed in this study is made up of three elements. First, a nanoparticle acts as the carrier framework for an imaging agent and for two peptides (short proteins). One of these peptides guides the nanoparticle and its payload specifically to cancer cells and the blood vessels that feed them by binding cell surface markers that distinguish them from normal cells. This same peptide also drives the whole system inside these target cells, where the second peptide wreaks havoc on the mitochondria, triggering cellular suicide through a process known as apoptosis.

Together, these peptides and nanoparticles proved extremely effective at treating two different mouse models of glioblastoma. In the first model, treated mice survived significantly longer than untreated mice. In the second model, untreated mice survived for only eight to nine weeks. In sharp contrast, treatment with this nanosystem cured all but one of ten mice. What's more, in addition to providing therapy, the nanoparticles could aid in diagnosing glioblastoma; they are made of iron oxide, which makes themand therefore the tumors they targetvisible by MRI, the same technique already used to diagnose many health conditions.

In a final twist, the researchers made the whole nanosystem even more effective by administering it to the mice in conjunction with a third peptide. Dr. Ruoslahti and his team previously showed that this peptide, known as iRGD, helps co-administered drugs penetrate deeply into tumor tissue. iRGD has been shown to substantially increase treatment efficacy of various drugs against human breast, prostate, and pancreatic cancers in mice, achieving the same therapeutic effect as a normal dose with one-third as much of the drug. Here, iRGD enhanced nanoparticle penetration and therapeutic efficacy.

"In this study, our patients were mice that developed glioblastomas with the same characteristics as observed in humans with the disease. We treated them systemically with the nanoparticles. Once the nanoparticles reached the tumors' blood vessels, they delivered their payload (a drug) directly to the cell's power producer, the mitochondria. By destroying the blood vessels and also some surrounding tumor cells, we were able to cure some mice and extend the lifespan of the rest," said Dinorah Friedmann-Morvinski, Ph.D., co-first author of the study and post-doctoral research associate in the laboratory of Inder Verma, Ph.D. at the Salk Institute.


Contact: Heather Buschman
Sanford-Burnham Medical Research Institute

Related biology technology :

1. NC State engineers discover nanoparticles can break on through
2. Engineering nanoparticles for maximum strength
3. Surface plasmon resonances of metal nanoparticles in array can have narrower spectral widths
4. Enhancing solar cells with nanoparticles
5. Nanoparticles double their chances of getting into sticky situations
6. Gold-palladium nanoparticles achieve greener, smarter production of hydrogen peroxide
7. Safer nanoparticles spotlight tumors, deliver drugs
8. New discovery reveals fate of nanoparticles in human cells
9. Engineers produce how-to guide for controlling the structure of nanoparticles
10. Study shows that size affects structure of hollow nanoparticles
11. Magnetic fields drive drug-loaded nanoparticles to reduce blood vessel blockages in an animal study
Post Your Comments:
Related Image:
Nanoparticles seek and destroy glioblastoma in mice
(Date:11/24/2015)... - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ICO) ... quarter ended September 30, 2015. Amounts, unless specified ... under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of iCo ... value enriching for this clinical program, but also ...
(Date:11/24/2015)... 24, 2015  Clintrax Global, Inc., a worldwide provider of clinical ... today announced that the company has set a new quarterly earnings ... on quarter growth posted for Q3 of 2014 to Q3 of ... Mexico , with the establishment of an ... --> United Kingdom and Mexico ...
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... 24, 2015  Twist Bioscience, a company focused ... Ph.D., Twist Bioscience chief executive officer, will present ... December 1, 2015 at 3:10 p.m. Eastern Time at The ... --> --> ... Bioscience is on Twitter. Sign up to follow ...
Breaking Biology Technology:
(Date:11/17/2015)... 17, 2015 Pressure BioSciences, Inc. (OTCQB: PBIO) ... and sale of broadly enabling, pressure cycling technology ("PCT")-based ... today announced it has received gross proceeds of $745,000 ... Placement (the "Offering"), increasing the total amount raised to ... additional closings are expected in the near future. ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
(Date:11/12/2015)... LONDON , Nov. 11, 2015   ... and reliable analytical tools has been paving the ... and qualitative determination of discrete analytes in clinical, ... sensors are being predominantly used in medical applications, ... and environmental sectors due to continuous emphasis on ...
Breaking Biology News(10 mins):