Navigation Links
Nanonets give rust a boost as agent in water splitting's hydrogen harvest
Date:2/9/2011

CHESTNUT HILL, MA (2/9/2011) Coating a lattice of tiny wires called Nanonets with iron oxide known more commonly as rust creates an economical and efficient platform for the process of water splitting, an emerging clean fuel science that harvests hydrogen from water, Boston College researchers report in the online edition of the Journal of the American Chemical Society.

Assistant Professor of Chemistry Dunwei Wang and his clean energy lab pioneered the development of Nanonets in 2008 and have since shown them to be a viable new platform for a number of energy applications by virtue of the increased surface area and improved conductivity of the nano-scale netting made from titanium disilicide, a readily available semiconductor.

Wang and his team report that coating the Nanonets with hematite, the plentiful mineral form of iron oxide, showed the mineral could absorb light efficiently and without the added expense of enhancing the material with an oxygen evolving catalyst.

The results flow directly from the introduction of the Nanonet platform, Wang said. While constructed of wires 1/400th the size of a human hair, Nanonets are highly conductive and offer significant surface area. They serve dual roles as a structural support and an efficient charge collector, allowing for maximum photon-to-charge conversion, Wang said.

"Recent research has shown that the use of a catalyst can boost the performance of hematite," said Wang. "What we have shown is the potential performance of hematite at its fundamental level, without a catalyst. By using this unique Nanonet structure, we have shed new light on the fundamental performance capabilities of hematite in water splitting."

On its own, hematite faces natural limits in its ability to transport a charge. A photon can be absorbed, but has no place to go. By giving it structure and added conductivity, the charge transport abilities of hematite increase, said Wang. Water splitting, a chemical reaction that separates water into oxygen and hydrogen gas, can be initiated by passing an electric current through water. But that process is expensive, so gains in efficiency and conductivity are required to make large-scale water splitting an economically viable source for clean energy, Wang said.

"The result highlights the importance of charge transport in semiconductor-based water splitting, particularly for materials whose performance is limited by poor charge diffusion," the researchers report in the journal. "Our design introduces material components to provide a dedicated charge transport pathway, alleviates the reliance on the materials' intrinsic properties, and therefore has the potential to greatly broaden where and how various existing materials can be used in energy-related applications."


'/>"/>

Contact: Ed Hayward
ed.hayward@bc.edu
617-552-4826
Boston College
Source:Eurekalert  

Related biology technology :

1. Scientists grow nanonets able to snare added energy transfer
2. Silicon-coated nanonets could build a better lithium-ion battery
3. Developer of nanonets snares National Science Foundation Career Award
4. ICON Medical Imaging Launches New Service to Boost Reliability of Cardiology Studies
5. Immureboost Inc Announces a Change of Name to Fountain Healthy Aging Inc
6. Cyntellect Launches CellXpress(TM) System to Boost Productivity of Biopharmaceutical Process Development
7. New Bill to Expand Promotion of Biofuels Is a Welcome Boost for U.S.-Brazil Relations According to Brazilian Sugarcane Industry
8. New Study Finds Growth Factor Boosts Productivity in Mammalian Cell Culture
9. First tunable, noiseless amplifier may boost quantum computing, communications
10. Waters Corporation Gives Boost to Clinical Research Programs at University of Sherbrooke Hospital
11. New nanocluster to boost thin films for semiconductors
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanonets give rust a boost as agent in water splitting's hydrogen harvest
(Date:1/19/2017)... BETHESDA, Md. , Jan. 18, 2017  Northwest ... company developing DCVax® personalized immune therapies for operable and ... Marnix Bosch , Chief Technical Officer of NW Bio, ... Thursday, January 19, 2017, at the Hyatt Regency Hotel ... Dr. Bosch will chair the session entitled "New Therapeutic ...
(Date:1/18/2017)... Mass. , Jan. 18, 2017   Boston ... novel compounds designed to target cancer stemness pathways, will ... investigational compound, napabucasin, at the 2017 ASCO Gastrointestinal Cancers ... Francisco . Napabucasin is an ... by targeting STAT3. i Cancer stem cells (CSCs) ...
(Date:1/18/2017)... ... January 18, 2017 , ... ... E&L expertise. Within Albany Molecular Research, Inc. (AMRI), the scientific staff dedicated to ... and is planned for further growth in 2017. Extractable & Leachable evaluations have ...
(Date:1/18/2017)... IL (PRWEB) , ... January 18, 2017 , ... ... on January 24th, 2017, to sell research and genetic testing lab equipment from ... service in the Northwest and Northeast regions of the United States. This 1-day ...
Breaking Biology Technology:
(Date:1/13/2017)... PORT WASHINGTON, N.Y. , Jan. 13, 2017 ... provider of technology solutions for the homecare industry, ... appointment of homecare industry expert, Justin Jugs, as ... Justin brings more than 15 years of homecare ... the team in developing strategic plans to align ...
(Date:1/12/2017)... January 12, 2017 A new report by Allied Market Research, ... global biometric technology market is expected to generate revenue of $10.72 billion by 2022, ... Continue Reading ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) In ...
(Date:1/6/2017)... 2017  Privately-held CalciMedica, Inc., announced that it ... of a novel calcium release-activated calcium (CRAC) channel ... Acute pancreatitis, sudden painful inflammation of ... can be very serious.  In severe cases it can ... hospital stays, time in the ICU and substantial ...
Breaking Biology News(10 mins):