Navigation Links
Nanomaterials show unexpected strength under stress
Date:3/12/2008

In yet another twist on the strangeness of the nanoworld, researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland-College Park have discovered that materials such as silica that are quite brittle in bulk form behave as ductile as gold at the nanoscale. Their results may affect the design of future nanomachines.

NIST scientists Pradeep Namboodiri and Doo-In Kim and colleagues first demonstrated* the latest incongruity between the macro and micro worlds this past fall with direct experimental evidence for nanoscale ductility. In a new paper** presented today at the March Meeting of the American Physical Society, NIST researchers Takumi Hawa and Michael Zachariah and guest researcher Brian Henz shared the insights they gained into the phenomenon through their computer simulations of nanoparticle aggregates.

At the macroscale, the point at which a material will fail or break depends on its ability to maintain its shape when stressed. The atoms of ductile substances are able to shuffle around and remain cohesive for much longer than their brittle cousins, which contain faint structural flaws that act as failure points under stress.

At the nanoscale, these structural flaws do not exist, and hence the materials are nearly perfect. In addition, these objects are so small that most of the atoms that comprise them reside on the surface. According to Namboodiri and Kim, the properties of the surface atoms, which are more mobile because they are not bounded on all sides, dominate at the nanoscale. This dominance gives an otherwise brittle material such as silica its counterintuitive fracture characteristics.

The terms brittle and ductile are macroscopic terminology, Kim says. It seems that these terms dont apply at the nanoscale.

Using an atomic force microscope (AFM), Kim and Namboodiri were able to look more closely at interfacial fracture than had been done before at the nanoscale. They found that the silica will stretch as much as gold or silver and will continue to deform beyond the point that would be predicted using its bulk-scale properties.

Hawa, Henz and Zachariahs simulations reaffirmed their study and added some additional details. They showed that both nanoparticle size and morphologywhether the material is basically crystalline or amorphous, for examplehave an effect on the observed ductility and tensile strength because those factors influence the mobility of surface atoms. In the simulations, the smaller the particles in the aggregate the more ductile the material behaved. Crystalline structures exhibited greater strength when stressed and deformed long after the critical yield point observed macroscopically.

Namboodiri explained that although the work is very basic, these findings might one day inform the design of microelectronic mechanical devices.


'/>"/>

Contact: Mark Esser
mark.esser@nist.gov
301-975-2767
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology technology :

1. NanoMaterials Technology to Conduct Process Development Feasibility Study with US Based Emerging Pharmaceutical Company
2. Experiments reveal unexpected activity of fuel cell catalysts
3. Researchers engineer new polymers to change their stiffness and strength when exposed to liquids
4. Surface dislocation nucleation: Strength is but skin deep at the nanoscale, Penn engineers discover
5. New York Strengthens Emergency Preparedness with Cardinal Health Ventilators
6. Strengthening fluids with nanoparticles
7. SpectraScience Strengthens Leadership Team With Four Key Hires
8. Hcareers.com Strengthens Local Market Candidate Reach Through RegionalHelpWanted.com Acquisition
9. BioSpace.com Strengthens Local Market Candidate Reach Through RegionalHelpWanted.com Acquisition
10. JobLoft.com Strengthens Local Market Candidate Reach Through RegionalHelpWanted.com Acquisition
11. MedImmune Strengthens Key Leadership Functions to Further Support Recently Expanded, Rapidly Advancing Product Portfolio
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanomaterials show unexpected strength under stress
(Date:5/23/2017)... Switzerland (PRWEB) , ... May 23, 2017 , ... ... forces machine manufacturers to re-engineer their control technology again and again. METTLER TOLEDO ... problem for machine manufacturers. The videos illustrate how integration of the ACT350 into ...
(Date:5/21/2017)... ... May 19, 2017 , ... Ovation Fertility ... the American Association of Bioanalysts (AAB) and the College of Reproductive Biology (CRB) ... reinforces AAB’s commitment to excellence in clinical laboratory services and regulations. , ...
(Date:5/18/2017)... ... May 18, 2017 , ... Dr. Ralph Mobbs of the ... Of Wales Private Hospital. The procedure was performed on a 46-year-old male patient ... treatments prior to undergoing surgery. , The AxioMed viscoelastic disc is a next-generation ...
(Date:5/18/2017)... (PRWEB) , ... May 17, ... ... CRO standards with psychonneuroendocrine stress expertise, and further enhances its scientific power ... researcher, Douglas A. Granger, Ph.D., has agreed to join the scientific advisory ...
Breaking Biology Technology:
(Date:3/30/2017)... NEW YORK , March 30, 2017 ... by type (physiological and behavioral), by technology (fingerprint, AFIS, ... recognition, voice recognition, and others), by end use industry ... travel and immigration, financial and banking, and others), and ... Europe , Asia Pacific ...
(Date:3/28/2017)... 2017 The report "Video Surveillance ... Servers, Storage Devices), Software (Video Analytics, VMS), and Service ... Forecast to 2022", published by MarketsandMarkets, the market was ... projected to reach USD 75.64 Billion by 2022, at ... base year considered for the study is 2016 and ...
(Date:3/24/2017)... MILAN , March 24, 2017 The Controller ... Deputy Controller Mr. Abdulla Algeen have received the prestigious international ... Continue Reading ... ... small picture) and Deputy Controller Abdulla Algeen (small picture on the right) ...
Breaking Biology News(10 mins):