Navigation Links
Nanocrystals and nickel catalyst substantially improve light-based hydrogen production
Date:11/8/2012

Hydrogen is an attractive fuel source because it can easily be converted into electric energy and gives off no greenhouse emissions. A group of chemists at the University of Rochester is adding to its appeal by increasing the output and lowering the cost of current light-driven hydrogen-production systems.

The work, funded by the U.S. Department of Energy, was led by chemistry professors Richard Eisenberg, Todd Krauss, and Patrick Holland, and included graduate students Zhiji Han and Fen Qiu. Their paper will be published later this month (Nov. 23) in the journal Science.

The chemists say their work advances what is sometimes considered the "holy grail" of energy scienceefficiently using sunlight to provide clean, carbon-free energy for vehicles and anything that requires electricity.

One disadvantage of current methods of hydrogen production has been the lack of durability, but the Rochester scientists were able to overcome that problem by incorporating nanocrystals. "Organic molecules are typically used to capture light in photocatalytic systems," said Krauss, who has been working in the field of nanocrystals for over 20 years. "The problem is they only last hours, or, if you're lucky, a day. These nanocrystals performed without any sign of deterioration for at least two weeks."

Richard Eisenberg, the Tracy H. Harris Professor of Chemistry, has spent two decades working on solar energy systems. During that time, his systems have typically generated 10,000 instancescalled turnoversof hydrogen atoms being formed without having to replace any components. With the nanocrystals, Eisenberg and his colleagues witnessed turnovers in excess of 600,000.

The researchers managed to overcome other disadvantages of traditional photocatalytic systems. "People have typically used catalysts made from platinum and other expensive metals," Holland said. "It would be much more sustainable if we used metals that were more easily found on the Earth, more affordable, and lower in toxicity. That would include metals, such as nickel."

Holland said their work is still in the "basic research stage," making it impossible to provide cost comparisons with other energy production systems. But he points out that nickel currently sells for about $8 per pound, while the cost of platinum is $24,000 per pound.

While all three researchers say the commercial implementation of their work is years off, Holland points out that an efficient, low-cost system would have uses beyond energy. "Any industry that requires large amounts of hydrogen would benefit, including pharmaceuticals and fertilizers," said Holland.

The process developed by Holland, Eisenberg, and Krauss is similar to other photocatalytic systems; they needed a chromophore (the light-absorbing material), a catalyst to combine protons and electrons, and a solution, which in this case is water. Krauss, an expert in nanocrystals, provided cadmium selenide (CdSe) quantum dots (nanocrystals) as the chromophore. Holland, whose expertise lies in catalysis and nickel research, supplied a nickel catalyst (nickel nitrate). The nanocrystals were capped with DHLA (dihydrolipoic acid) to make them soluble, and ascorbic acid was added to the water as an electron donor.

Photons from a light source excite electrons in the nanocrystals and transfer them to the nickel catalyst. When two electrons are available, they combine on the catalyst with protons from water, to form a hydrogen molecule (H2).

This system was so robust that it kept producing hydrogen until the source of electrons was removed after two weeks. "Presumably, it could continue even longer, but we ran out of patience!" said Holland.

One of the next steps will be to look at the nature of the nanocrystal. "Some nanocrystals are like M&Ms they have a core with a shell around it," said Eisenberg. "Ours is just like the core. So we need to consider if they would they work better if they were enclosed in shells."


'/>"/>
Contact: Peter Iglinski
peter.iglinski@rochester.edu
585-273-4726
University of Rochester
Source:Eurekalert  

Related biology technology :

1. Research on nanocrystals to move from lab to market
2. Novel technique to synthesize nanocrystals that harvest solar energy
3. Nanotechnology for Drug Delivery: Global Market for Nanocrystals
4. Nanocrystals make dentures shine
5. On the road to plasmonics with silver polyhedral nanocrystals
6. Arecor Awarded Biomedical Catalyst Funding Towards £1.3 Million Project
7. Creabilis Receives Prestigious Technology Strategy Board Biomedical Catalyst Award
8. Penn team and colleagues create a cheaper and cleaner catalyst for burning methane
9. Stevenage Bioscience Catalyst to Welcome Cambridge University Researchers
10. Stevenage Bioscience Catalyst Opens With Exciting Year Ahead
11. Will new methods that increase blood flow to bone implants improve viability of engineered bone tissue?
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Nanocrystals and nickel catalyst substantially improve light-based hydrogen production
(Date:2/11/2016)... 11, 2016   BioInformant announces the February ... Research Products, Opportunities, Tools, and Technologies – Market Size, ... The first and ... cell industry, BioInformant has more than a decade of ... market, by stem cell type. This powerful 175 page ...
(Date:2/10/2016)... Early-career researchers from Indonesia , ... Uganda and Yemen honored ... Indonesia , Nepal , ... are being honored for their accomplishments in nutrition, psychiatry, biotechnology, ... young women scientists who are pursuing careers in agriculture, biology and medicine ...
(Date:2/10/2016)... Wash., Feb. 10, 2016  IsoRay, Inc. (NYSE MKT: ... brachytherapy and medical radioisotope applications for the treatment of ... today announced its financial results for the second quarter ... 31, 2015. --> ... quarter of fiscal 2016, which ended December 31, 2015, ...
(Date:2/10/2016)... ... ... LATHAM, NEW YORK... Marktech Optoelectronics will feature their new high-speed InGaAs ... Moscone Center from February 16-18, 2016, and at the healthcare-focused BiOS Expo on February ... standard packages feature a TO-46 metal can with active areas of 1.0mm and 1.5mm ...
Breaking Biology Technology:
(Date:2/9/2016)... (NASDAQ: AWRE ), a leading supplier of biometrics software and ... ended December 31, 2015.  --> ... million, an increase of 61% compared to $4.3 million in the ... 2015 was $2.6 million compared to $0.2 million in the fourth ... Higher revenue and operating income in the fourth quarter of ...
(Date:2/3/2016)... -- --> --> Fourth quarter 2015: ... 1,187% compared with fourth quarter of 2014. Gross margin was ... 30.0). Earnings per share increased to SEK 6.39 (loss: 0.49). ... 74.7). , --> --> ... M (233.6), up 1,142% compared with 2014. Gross margin was ...
(Date:2/2/2016)... 2016 This BCC Research report provides ... reviewing the recent advances in high throughput ‘omic ... field forward. Includes forecast through 2019. ... and opportunities that exist in the bioinformatic market. ... as well as IT and bioinformatics service providers. ...
Breaking Biology News(10 mins):