Navigation Links
Nanocoatings boost industrial energy efficiency

AMES, Iowa -- Friction is the bane of any machine. When moving parts are subject to friction, it takes more energy to move them, the machine doesn't operate as efficiently, and the parts have a tendency to wear out over time.

But if you could manufacture parts that had tough, "slippery" surfaces, there'd be less friction, requiring less input energy and the parts would last longer. Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory are collaborating with other research labs, universities, and industrial partners to develop just such a coating.

"If you consider a pump, like a water pump or a hydraulic pump, it has a turbine that moves the fluid," said Bruce Cook, an Ames Laboratory scientist and co-principal investigator on the four-year, $3 million project. "When the rotor spins, there's friction generated at the contacting surface between the vanes and the housing, or stator. This friction translates into additional torque needed to operate the pump, particularly at start-up. In addition, the friction results in a degradation of the surfaces, which reduces efficiency and the life of the pump. It takes extra energy to get the pump started, and you can't run it at its optimum (higher speed) efficiency because it would wear out more quickly."

Applying a coating to the blades that would reduce friction and increase wear resistance could have a significant effect in boosting the efficiency of pumps, which are used in all kinds of industrial and commercial applications. According to Cook, government calculations show that a modest increase in pump efficiency resulting from use of these nanocoatings could reduce U.S. industrial energy usage by 31 trillion BTUs annually by 2030, or a savings of $179 million a year.

The coating Cook is investigating is a boron-aluminum-magnesium ceramic alloy he discovered with fellow Ames Laboratory researcher and Iowa State University professor of Materials Science and Engineering Alan Russell about eight years ago. Nicknamed BAM, the material exhibited exceptional hardness, and the research has expanded to include titanium-diboride alloys as well.

In many applications it is far more cost effective to apply the wear-resistant materials as a coating than to manufacture an entire part out of the ceramic. Fortunately, the BAM material is amenable to application as a hard, wear-resistant coating. Working with ISU materials scientist Alan Constant, the team is using a technique called pulsed laser deposition to deposit a thin layer of the alloy on hydraulic pump vanes and tungsten carbide cutting tools. Cook is working with Eaton Corporation, a leading manufacturer of fluid power equipment, using another, more commercial-scale technique known as magnetron sputtering to lay down a wear-resistant coating.

Pumps aren't the only applications for the boride nanocoatings. The group is also working with Greenleaf Corporation, a leading industrial cutting tool maker, to put a longer lasting coating on cutting tools. If a tool cuts with reduced friction, less applied force is needed, which directly translates to a reduction in the energy required for the machining operation.

To test the coatings, the project team includes Peter J. Blau and Jun Qu at one of the nation's leading friction and wear research facilities at DOE's Oak Ridge National Laboratory, or ORNL, in Tennessee. Initial tests show a decrease in friction relative to an uncoated surface of at least an order of magnitude with the AlMgB14-based coating. In preliminary tests, the coating also appears to outperform other coatings such as diamond-like carbon and TiB2.

In a separate, but somewhat related project, Cook is working with researchers from ORNL, Missouri University of Science and Technology, the University of Alberta, and private companies to develop coatings in high-pressure water jet cutting tools and severe service valves where parts are subject to abrasives and other extreme conditions.

"This is a great example of developing advanced materials with a direct correlation to saving energy," Cook said. "Though the original discovery wasn't by design, we've done a great deal of basic research in trying to figure out the molecular structure of these materials, what gives them these properties and how we can use this information to develop other, similar materials."


Contact: Kerry Gibson
DOE/Ames Laboratory

Related biology technology :

1. Winning University of Melbourne Ph.D. research boosts the search for sensitive sensors
2. New nanocluster to boost thin films for semiconductors
3. Waters Corporation Gives Boost to Clinical Research Programs at University of Sherbrooke Hospital
4. First tunable, noiseless amplifier may boost quantum computing, communications
5. New Study Finds Growth Factor Boosts Productivity in Mammalian Cell Culture
6. New Bill to Expand Promotion of Biofuels Is a Welcome Boost for U.S.-Brazil Relations According to Brazilian Sugarcane Industry
7. Cyntellect Launches CellXpress(TM) System to Boost Productivity of Biopharmaceutical Process Development
8. Immureboost Inc Announces a Change of Name to Fountain Healthy Aging Inc
9. ICON Medical Imaging Launches New Service to Boost Reliability of Cardiology Studies
10. On the boil: New nano technique significantly boosts boiling efficiency
11. Aortic Stent Grafts Will Boost Canadian and Japanese Peripheral Vascular Markets
Post Your Comments:
Related Image:
Nanocoatings boost industrial energy efficiency
(Date:11/24/2015)... ... November 24, 2015 , ... The United States Golf Association (USGA) ... USGA Green Section Award. Presented annually since 1961, the USGA Green Section Award recognizes ... with turfgrass. , Clarke, of Iselin, N.J., is an extension specialist of ...
(Date:11/24/2015)... , ... November 24, 2015 , ... ... healthy metabolism. But unless it is bound to proteins, copper is also toxic ... (NIH), researchers at Worcester Polytechnic Institute (WPI) will conduct a systematic study of ...
(Date:11/24/2015)... 2015 --> ... "Oligonucleotide Synthesis Market by Product & Services (Primer, Probe, ... DNA, RNAi), End-User (Research, Pharmaceutical & Biotech, Diagnostic Labs) ... market is expected to reach USD 1,918.6 Million by ... CAGR of 10.1% during the forecast period. ...
(Date:11/24/2015)... 24, 2015 --> ... report released by Transparency Market Research, the global non-invasive ... CAGR of 17.5% during the period between 2014 and ... Global Industry Analysis, Size, Volume, Share, Growth, Trends and ... testing market to reach a valuation of US$2.38 bn ...
Breaking Biology Technology:
(Date:10/29/2015)...  The J. Craig Venter Institute (JCVI) policy group ... Biosecurity: Lessons Learned and Options for the Future," which ... Services guidance for synthetic biology providers has worked since ... --> --> Synthetic biology promises great ... pose unique biosecurity threats. It now is easier than ...
(Date:10/29/2015)... Oct. 29, 2015 Today, LifeBEAM ... partnership with 2XU, a global leader in technical ... smart hat with advanced bio-sensing technology. The hat ... to monitor key biometrics to improve overall training ... the two companies will bring together the most advanced ...
(Date:10/26/2015)... and LAS VEGAS , ... Nok Labs , an innovator in modern authentication and ... today announced the launch of its latest version of ... platform enabling organizations to use standards-based authentication that supports ... Nok S3 Authentication Suite is ideal for organizations deploying ...
Breaking Biology News(10 mins):