Navigation Links
Nano-sandwich triggers novel electron behavior
Date:5/5/2009

A material just six atoms thick in which electrons appear to be guided by conflicting laws of physics depending on their direction of travel has been discovered by a team of physicists at the University of California, Davis. Working with computational models, the team has found that the electrons in a thin layer of vanadium dioxide sandwiched between insulating sheets of titanium dioxide exhibit one set of properties when moving in forward-backward directions, and another set when moving left to right.

With its unique properties, the material could open up a new world of possibilities in the emerging field of spintronics technology, which takes advantage of the magnetic as well as the electric properties of electrons in the design of novel electronic devices.

A paper describing the material and its properties appears in the April 22 issue of Physical Review Letters.

"Our model is demonstrating a new kind of band structure [dynamics of electrons], which no one has been aware of before," said Warren Pickett, professor and chair of the physics department at UC Davis. "We think that some of the transport properties we're seeing in the material electrical conduction and conduction in a magnetic field will be different than anything seen before."

The discovery comes five years after a group at the University of Manchester in England first isolated graphene, a single-layer lattice of carbon atoms. That material, too, had unique electronic properties, and it sparked a huge surge of interest among physicists and materials scientists, who have published hundreds of papers on it. The team termed the behavior of electrons in graphene "Dirac-like" because of its similarity to the behavior of massless particles as described in an equation formulated by the illustrious theoretical physicist Paul Dirac.

Now Pickett and co-author Victor Pardo, a professor at the University of Santiago de Compostela in Spain who was a visiting professor at UC Davis when he did the work, have coined the term "semi-Dirac" to characterize the behavior of electrons in their multilayered vanadium dioxide lattice.

In this nanomaterial, Pickett explained, the sandwiching layers of the insulating titanium dioxide confine the vanadium, enforcing two-dimensional motion on its electrons. When the electrons move in one direction, they behave in the usual fashion, as particles with mass, but movement in the other direction produces behavior characteristic of particles without mass.

"It's important that we use precisely three layers of vanadium dioxide," Pickett said. "Using one or two layers only produces a magnetic insulator, while anything more than three layers produces a fairly normal magnetic metal that exhibits conducting behavior. The semi-Dirac system is neither conducting nor insulating."

A big advantage that the vanadium lattice has over the one-layer thick graphene is greater rigidity, which will make it easier to etch into experimental or functional shapes, Pickett said.

For the time being, the material exists only as a computational model. Yet many of the basic, underlying processes and principles of physics are first established theoretically, with or without computational analysis, Pickett said.

Pickett and Pardo have teamed with UC Davis physics professor Rajiv Singh and graduate student Swapnonil Banerjee to investigate the material's properties. The team has constructed a classical mathematical model called a "tight-binding" model that they expect will promote a theoretical understanding of the material at the most basic level. "We're pretty confident that this nanostructure can be made, and made clean enough to demonstrate the properties the model has demonstrated," Pickett said.

The group has already achieved a basic understanding of the low energy behavior of semi-Dirac systems and has submitted a second paper for publication describing the peculiar behavior.


'/>"/>

Contact: Liese Greensfelder
lgreensfelder@ucdavis.edu
530-752-6101
University of California - Davis
Source:Eurekalert

Related biology technology :

1. Commercial Launch of Lexiscan(TM) (Regadenoson) Injection Triggers $10 Million Milestone Payment from TPG-Axon Capital to CV Therapeutics
2. Selection of Development Candidate Triggers $0.5 Million Milestone Payment to Ardea Biosciences, Inc.
3. ChemoCentryx Identifies Novel Small Molecule C5aR Antagonist
4. Tepha Partner Launches Novel Monofilament Absorbable Suture Utilizing Tephas Proprietary Biomaterial
5. PharmAthene Presents Data for SparVax(TM), a Novel Vaccine for the Prevention and Treatment of Anthrax Infection, at the 12th Annual Conference on Vaccine Research
6. Novel Once Daily Anti-Epileptic Zebinix(R) Approved in the European Union
7. Amira Initiates Phase I Clinical Trial of Novel DP2 Antagonist
8. Novel CU-Boulder technique shrinks size of nanotechnology circuitry
9. Waters and University of Warwick Sign Research Agreement Designed to Foster Adoption of Novel MS Technologies
10. Symphony Medical Announces First Patient Successfully Treated With Novel Congestive Heart Failure Therapy
11. Novel method predicts impact of a covert anthrax release
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/27/2016)... ... June 27, 2016 , ... Cancer experts from Austria, ... could be a new and helpful biomarker for malignant pleural mesothelioma. Surviving Mesothelioma ... read it now. , Biomarkers are components in the blood, tissue or ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... announced the funding of a Sponsored Research Agreement ... circulating tumor cells (CTCs) from cancer patients.  The ... in CTC levels correlate with clinical outcomes in ... These data will then be employed to support ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
Breaking Biology Technology:
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/16/2016)... , June 16, 2016 ... is expected to reach USD 1.83 billion by ... View Research, Inc. Technological proliferation and increasing demand ... are expected to drive the market growth. ... The development of advanced multimodal techniques ...
(Date:6/3/2016)... LONDON , June 3, 2016 /PRNewswire/ ... Transport Management) von Nepal ... ,Angebot und Lieferung hochsicherer geprägter Kennzeichen, einschließlich ... weltweit führend in der Produktion und Implementierung ... an der Ausschreibung im Januar teilgenommen, aber ...
Breaking Biology News(10 mins):