Navigation Links
Nano bundles pack a powerful punch
Date:8/22/2011

Rice University researchers have created a solid-state, nanotube-based supercapacitor that promises to combine the best qualities of high-energy batteries and fast-charging capacitors in a device suitable for extreme environments.

A paper from the Rice lab of chemist Robert Hauge, to be published in the journal Carbon, reported the creation of robust, versatile energy storage that can be deeply integrated into the manufacture of devices. Potential uses span on-chip nanocircuitry to entire power plants.

Standard capacitors that regulate flow or supply quick bursts of power can be discharged and recharged hundreds of thousands of times. Electric double-layer capacitors (EDLCs), generally known as supercapacitors, are hybrids that hold hundreds of times more energy than a standard capacitor, like a battery, while retaining their fast charge/discharge capabilities.

But traditional EDLCs rely on liquid or gel-like electrolytes that can break down in very hot or cold conditions. In Rice's supercapacitor, a solid, nanoscale coat of oxide dielectric material replaces electrolytes entirely.

The researchers also took advantage of scale. The key to high capacitance is giving electrons more surface area to inhabit, and nothing on Earth has more potential for packing a lot of surface area into a small space than carbon nanotubes.

When grown, nanotubes self-assemble into dense, aligned structures that resemble microscopic shag carpets. Even after they're turned into self-contained supercapacitors, each bundle of nanotubes is 500 times longer than it is wide. A tiny chip may contain hundreds of thousands of bundles.

For the new device, the Rice team grew an array of 15-20 nanometer bundles of single-walled carbon nanotubes up to 50 microns long. Hauge, a distinguished faculty fellow in chemistry, led the effort with former Rice graduate students Cary Pint, first author of the paper and now a researcher at Intel, and Nolan Nicholas, now a researcher at Matric.

The array was then transferred to a copper electrode with thin layers of gold and titanium to aid adhesion and electrical stability. The nanotube bundles (the primary electrodes) were doped with sulfuric acid to enhance their conductive properties; then they were covered with thin coats of aluminum oxide (the dielectric layer) and aluminum-doped zinc oxide (the counterelectrode) through a process called atomic layer deposition (ALD). A top electrode of silver paint completed the circuit.

"Essentially, you get this metal/insulator/metal structure," said Pint. "No one's ever done this with such a high-aspect-ratio material and utilizing a process like ALD."

Hauge said the new supercapacitor is stable and scaleable. "All solid-state solutions to energy storage will be intimately integrated into many future devices, including flexible displays, bio-implants, many types of sensors and all electronic applications that benefit from fast charge and discharge rates," he said.

Pint said the supercapacitor holds a charge under high-frequency cycling and can be naturally integrated into materials. He envisioned an electric car body that is a battery, or a microrobot with an onboard, nontoxic power supply that can be injected for therapeutic purposes into a patient's bloodstream.

Pint said it would be ideal for use under the kind of extreme conditions experienced by desert-based solar cells or in satellites, where weight is also a critical factor. "The challenge for the future of energy systems is to integrate things more efficiently. This solid-state architecture is at the cutting edge," he said.


'/>"/>

Contact: David Ruth
druth@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology technology :

1. Indianas $44 Billion Life Sciences Industry Packs a Powerful Punch
2. Powerful new way to control magnetism
3. DNA2.0 Introduces Powerful, Free Gene Design Software
4. Unigen Announces the Launch of Nivitol™ - Powerful New Anti-Aging Skin Care Ingredient
5. Mettler Toledo and PDS Pathology Data Systems Integrate Powerful Solutions for Faster and More Accurate Preclinical Studies
6. New silicon-germanium nanowires could lead to smaller, more powerful electronic devices
7. Elsevier is Re-Launching "Embase" to be a Powerful Resource Providing Deep Insights and Answers to Biomedical Researchers
8. Powerful Image Registration and Recognition Software Unveiled for Medical, Satellite, and Defense Imaging Industries
9. Nanotechnologists gain powerful new materials probe
10. Denser, more powerful computer chips possible with plasmonic lenses that fly
11. Aureus Pharma Releases AurPROFILER(R) - a New and Powerful Pharmacology Profiling Solution
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/10/2017)... CA (PRWEB) , ... October ... ... a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, today ... of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in collaboration ...
(Date:10/10/2017)... -- International research firm Parks Associates announced today that ... TMA 2017 Annual Meeting , October 11 in Scottsdale, Arizona ... market and how smart safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase ... "The residential security market has experienced continued growth, ...
(Date:10/10/2017)... ... October 10, 2017 , ... The Pittcon Program ... honoring scientists who have made outstanding contributions to analytical chemistry and ... 2018, the world’s leading conference and exposition for laboratory science, which will be ...
(Date:10/9/2017)... ... October 09, 2017 , ... At its national board ... Stubbs, a professor in Harvard University’s Departments of Physics and Astronomy, has been selected ... member of the winning team for the 2015 Breakthrough Prize in Fundamental physics for ...
Breaking Biology Technology:
(Date:4/13/2017)... April 13, 2017 According to a new market ... Identity Analytics, Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, ... Market is expected to grow from USD 14.30 Billion in 2017 to ... of 17.3%. ... MarketsandMarkets Logo ...
(Date:4/11/2017)... 2017 No two people are believed ... New York University Tandon School of Engineering and ... that partial similarities between prints are common enough ... phones and other electronic devices can be more ... lies in the fact that fingerprint-based authentication systems ...
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
Breaking Biology News(10 mins):