Navigation Links
NYSCF scientists create personalized bone substitutes from skin cells
Date:5/6/2013

NEW YORK, NY (May 6, 2013) A team of New York Stem Cell Foundation (NYSCF) Research Institute scientists report today the generation of patient-specific bone substitutes from skin cells for repair of large bone defects. The study, led by Darja Marolt, PhD, a NYSCF-Helmsley Investigator and Giuseppe Maria de Peppo, PhD, a NYSCF Research Fellow, and published in the Proceedings of the National Academy of Sciences of the USA, represents a major advance in personalized reconstructive treatments for patients with bone defects resulting from disease or trauma.

This advance will facilitate the development of customizable, three-dimensional bone grafts on-demand, matched to fit the exact needs and immune profile of a patient. Taking skin cells, the NYSCF scientists utilized an advanced technique called "reprogramming" to revert adult cells into an embryonic-like state. These induced pluripotent stem (iPS) cells carry the same genetic information as the patient and they can become any of the body's cell types.

The NYSCF team guided these iPS cells to become bone-forming progenitors and seeded the cells onto a scaffold for three-dimensional bone formation. They then placed the constructs into a device called a bioreactor, which provides nutrients, removes waste, and stimulates maturation, mimicking a natural developmental environment.

"Bone is more than a hard mineral composite, it is an active organ that constantly remodels. Blood vessels shuttle important nutrients to healthy cells and remove waste; nerves provide connection to the brain; and, bone marrow cells form new blood and immune cells," said Marolt.

Previous studies have demonstrated the bone-forming potential from other cell sources, yet serious caveats for clinical translation remain. A patient's own bone marrow stem cells can form bone and cartilaginous tissue, not the underlying vasculature and nerve compartments; and, embryonic stem cell derived bone may prompt an immune rejection. The NYSCF scientists chose to work with iPS cells to overcome these limitations, comparing iPS sources with embryonic stem cells and bone marrow derived cells.

"No other research group has published work on creating fully-viable, functional, three-dimensional bone substitutes from human iPS cells. These results bring us closer to achieving our ultimate goal, to develop the most promising treatments for patients," said de Peppo.

While severity varies, bone defects and injuries are currently treated with bone grafts, taken either from another part of the patient's body or a donor bone bank, or with synthetic substitutes. None of these permit complex reconstruction, and they may elicit immune rejection or fail to integrate with surrounding connective tissues. For trauma patients, suffering from shrapnel wounds or vehicular injury, these traditional treatments provide limited functional and cosmetic improvement.

After a comprehensive in vitro analysis of the generated bone, the NYSCF team assessed stability when transplanted in an animal model to address a major concern for iPS-based cell therapies. Undifferentiated iPS cells can form teratomas, a type of tumor. The iPS cell-derived bone substitutes were implanted under the skin of immunocompromised mice. After 12 weeks, the explanted constructs matured and showed no malignancies but complete maturation of bone tissue, while blood vessel cells began to integrate along the grafts. These results indicate the stability of the bone substitutes.

The scientists caution that although these results represent a major advance, further research is necessary before skin cell-derived bone grafts reach patients. Next steps include protocol optimization and the successful growth of blood vessels within the bone.

"Following from these findings, we will be able to create tailored bone grafts, on demand, for patients without any immune rejection issues," said Susan L. Solomon, CEO of NYSCF. "This is not a good approach, it is the best approach to repair devastating damage or defects."

Beyond potential therapeutic relevance, these adaptive bone substitutes may be implemented to model bone development and different pathologies. Analysis could enrich current understanding and identify potential drug targets.


'/>"/>

Contact: David McKeon
dmckeon@nyscf.org
212-365-7440
New York Stem Cell Foundation
Source:Eurekalert

Related biology technology :

1. Scottish Scientists Lead This Years Life Science Discoveries
2. Scripps Research Institute Scientists Find Antibody that Transforms Bone Marrow Stem Cells Directly into Brain Cells
3. Scientists Find Way to Fast-Track Production of Stem Cells that Show Promise in Treating AMD
4. A bright idea: Tiny injectable LEDs help neuroscientists study the brain
5. Highly lethal Ebola virus has diagnostic Achilles heel for biothreat detection, scientists say
6. NineSigma Announces Winners in $25,000 Sustainable Packaging Challenge in Conjunction With Scientists Without Borders and Partners
7. Research Team led by JCVI Scientists Uncover More Complexity and Detail in Southern African Genomic Diversity
8. Dr. Ali S. Faqi and Leading Scientists Author Ground-Breaking Toxicology Book from Elsevier
9. Scientists discover molecule that does double duty in stopping asthma attacks
10. Scientists Warn of Long Term Consequences of Budget Sequestration: BioInformatics LLC Report
11. UC Santa Barbara scientists develop a whole new way of harvesting energy from the sun
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/11/2016)... and GERMANTOWN, Maryland , February ... Prime Standard: QIA) today announced the introduction of more ... expression profiling, expanding QIAGEN,s portfolio of Sample to Insight ... to select from over 20,000 human genes and lncRNA ... genes, cellular phenotypes and disease processes. --> ...
(Date:2/11/2016)... 2016  Spectra BioPharma Selling Solutions (Spectra) is ... biopharma companies the experience, expertise, operational delivery and ... sales teams. Created in concert with industry leading ... strategic and tactical needs of its clients by ... both personal and non-personal promotion. ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... delivering cutting-edge information focused on the development and manufacture of biopharmaceuticals and ... premier sponsor of the 2016 BioProcess International Awards – Recognizing Excellence in ...
(Date:2/11/2016)... DELRAY BEACH, Florida , February 11, 2016 ... --> PositiveID Corporation ("PositiveID" or "Company") (OTCQB: ... and diagnostics, announced today that its Thermomedics subsidiary, ... significant progress on its growth plan in January ... healthcare products distributors, increasing sequential monthly sales growth, ...
Breaking Biology Technology:
(Date:2/2/2016)... , Feb. 2, 2016  Based on its ... & Sullivan recognizes US-based Intelligent Retinal Imaging Systems ... Sullivan Award for New Product Innovation. IRIS, a ... North America , is poised to ... growing diabetic retinopathy market. The IRIS technology presents ...
(Date:1/28/2016)... JOSE, Calif., Jan. 28, 2016 Synaptics (NASDAQ: SYNA ... results for its second quarter ended December 31, 2015. ... second quarter of fiscal 2016 increased 2 percent compared to the ... second quarter of fiscal 2016 was $35.0 million, or $0.93 per ... Non-GAAP net income for the first quarter of fiscal 2016 grew ...
(Date:1/22/2016)... DUBLIN , January 22, 2016 ... has announced the addition of the  ... to their offering. --> ... of the  "Global Behavioral Biometric Market ... --> Research and Markets ( http://www.researchandmarkets.com/research/4lmf2s/global_behavioral ...
Breaking Biology News(10 mins):