Navigation Links
NTU scientists invent superbug killers
Date:5/11/2012

The superbugs have met their match.

Conceived at Nanyang Technological University (NTU), it comes in the form of a coating which has a magnetic-like feature that attracts bacteria and kills them without the need for antibiotics.

The killer coating, which has shown to destroy 99 per cent of the bacteria and fungi that it comes in contact with, is now being used by two companies: a contact lens manufacturer and a company specialising in animal care products.

The next step is to extend its use in a wide range of biomedical and consumer products, ranging from implants and surgical instruments to kitchen utensils and cutlery, as it is harmless to human cells.

This is an alternative solution which could replace antibiotics - currently the main defence against bacteria - now powerless against super bugs.

The brainchild of Professor Mary Chan, Acting Chair of NTU's School of Chemical and Biomedical Engineering, the coating made from Dimethyldecylammonium Chitosan methacrylate has earned a place in the prestigious international journal, Nature Materials.

This "sponge-like" polymer holds a positive charge, which acts as a magnet-type of force to draw in bacteria which has a negative charge on their cell walls. When the bacterium comes in contact with the coating, the cell walls are 'sucked' into the nanopores, causing the cell to rupture, thus killing the bacterium.

"The coating can also be applied on biomedical objects, such as catheters and implants to prevent bacterial infections, which is a serious cause of concern as many bacteria are now developing resistance to antibiotics - currently our main source of treatment for infections," Prof Chan said.

"By developing novel materials which uses physical interaction to kill bacteria cells, we envisage this can be an alternative form of treatment for bacterial infections in the near future."

Superbugs which had fallen prey to the coating include Pseudomonas aeruginosa, which can cause infections in the upper respiratory tract, gastrointestinal tract and the urinary tract; and Staphylococcus aureus, which can cause infections ranging from skin boils or abscesses to deadly diseases such as pneumonia and meningitis.

This research for a broad-spectrum antimicrobial coating was first sparked off by Prof Chan wanting to find an effective way to combat bacteria and fungi on contact lenses which could cause corneal infections (microbial keratitis) that could lead to permanent visual damage.

According to a 2006 study, the estimated annual incidence of a common fungi corneal infection, Fusarium keratitis, related to contact lens wear in Singapore is 2.35 per 10,000 wearers.

Building on the success of the antibacterial coating, Prof Chan and her doctoral student, Mr Li Peng, have now succeeded in making another broad-spectrum antimicrobial solution of a similar kind which is highly selective, killing off only bacteria and fungi without harming human cells In vitro.

Their research was published recently in a leading journal, Advanced Materials. This liquid material based on cationic antimicrobial peptidopolysaccharide, is a polymer which is attracted to microbial cell walls. When the two come into contact, the integrity of the cell wall is disrupted which leads to its rupture and death.

As this novel material kills cells via the destruction of cell walls, it makes it extremely difficult for bacteria to develop an effective resistance.

Prof Chan hopes to further develop this solution into topical applications such as cream and lotions, which can be used to disinfect and treat serious or chronic wounds such as lesions suffered by diabetic patients, killing any bacteria present that are resistant to antibiotics.

"Our long term goal is to develop this into an ingestible form, so it can effectively treat bacterial infections within the body, such as pneumonia and meningitis, replacing antibiotics as the standard treatment." she added.

The two antimicrobial prototypes - the coating and the liquid solution - took a total of five years to research and costs over $800,000 to develop.

Prof Chan now aims to improve the liquid solution by developing it into a safe and proven antibiotic replacement within the next five years as the demand for such alternatives will be even higher with the rapid emergence of superbugs.


'/>"/>
Contact: Lester Kok
lesterkok@ntu.edu.sg
65-679-06804
Nanyang Technological University
Source:Eurekalert

Related biology technology :

1. Scientists gain new understanding of Alzheimers trigger
2. Scientists develop new technique that could improve heart attack prediction
3. Leading Scientists to Debate Views on Rejuvenation Biotechnologies
4. UCF scientists use nanotechnology to hunt for hidden pathogens
5. Scientists develop tools to make more complex biological machines from yeast
6. UMass Amherst polymer scientists, physicists develop new way to shape thin gel sheets
7. Scientists Discover How a Bacterial Pathogen Breaks Down Barriers to Enter and Infect Cells
8. Design eye for the science guy: Drop-in clinic helps scientists communicate data
9. Scientists learn how to out run damage with imaging technique
10. Receptos Scientists Publish Determination of a High Resolution Sphingosine 1-Phosphate Receptor 1 Structure in Science
11. Scientists decode brain waves to eavesdrop on what we hear
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/16/2017)...  ArmaGen, Inc., a privately held biotechnology company ... neurological disorders, today reported preliminary evidence of cognitive ... investigational therapy for the treatment of Hurler and ... or MPS I). The initial results from an ... at the 13 th annual WORLD Symposium ...
(Date:2/16/2017)... , Feb. 16, 2017   Capricor ... a clinical-stage biotechnology company developing first-in-class biological therapies ... that it has elected to terminate its license ... peptide receptor agonists, including Cenderitide. "Our ... move as we prioritize our efforts to advance ...
(Date:2/16/2017)... PALM BEACH, Florida , February 16, 2017 ... vastly improving with the infusion of innovative telemedicine ... patient monitoring services that are experiencing a boom ... evolve with the advancement of technologies, services and ... Technologies Inc. (OTC: RQHTF) (TSX-V: RHT), Cellectar Biosciences, ...
(Date:2/16/2017)... 16, 2017  Dermata Therapeutics, LLC, a biotechnology ... a variety of dermatological diseases, today announced it ... and entered into a $5 million credit facility ... use the capital for general corporate purposes to ... the treatment of serious diseases treated by dermatologists. ...
Breaking Biology Technology:
(Date:2/10/2017)... Research and Markets has announced the addition ... and Commercial Aspects" to their offering. ... Biomarkers play an ... for selection of treatment as well for monitoring the results. ... in modern medicine. Biochip/microarray technologies and next generation sequencing are ...
(Date:2/8/2017)... -- Report Highlights ... The global synthetic-biology market reached nearly $3.9 billion ... at a compound annual growth rate (CAGR) of 24.0% through ... markets for synthetic biology. - Analyses of global market trends, ... compound annual growth rates (CAGRs) through 2021. - Coverage of ...
(Date:2/7/2017)... 7, 2017 Zimmer Biomet Holdings, Inc. (NYSE ... will present at the LEERINK Partners 6th Annual Global ... on Wednesday, February 15, 2017 at 10 a.m. Eastern ... presentation can be accessed at http://wsw.com/webcast/leerink28/zbh .  The ... via Zimmer Biomet,s Investor Relations website at http://investor.zimmerbiomet.com ...
Breaking Biology News(10 mins):