Navigation Links
NRL scientists achieve high temperature milestone in silicon spintronics
Date:5/5/2011

(WASHINGTON) -- Researchers in the Materials Science and Technology division of the Naval Research Laboratory have recently demonstrated electrical injection, detection and precession of spin accumulation in silicon, the cornerstone material of modern device technology, at temperatures up to 225 degrees Celsius. These results provide the first demonstration that spin accumulation in Si is viable as a basis for practical devices which meet the operating temperatures specified for commercial (85˚C), industrial (100˚C) and military (125˚C) applications. This is a key enabling step for developing devices which rely on electron spin rather than electron charge, an approach known as semiconductor spintronics that is expected to provide devices with higher performance, lower power consumption and less heat dissipation. The complete findings of this study titled, "Electrical injection and detection of spin accumulation in silicon at 500K with magnetic metal / silicon dioxide contacts" are published in the 22 March 2011 issue of Nature Communications 2:245 DOI: 10.1038/ncomms1256 (2011).

The electron possesses an internal angular momentum called the spin. The International Technology Roadmap for Semiconductors has identified the electron's spin as a new state variable that should be explored as an alternative to the electron's charge for use beyond Moore's Law, a projection named after Intel co-founder Gordon E. Moore. Moore predicted in 1965 that the number of transistors per unit area in an integrated circuit would double approximately every two years as advances in fabrication technology enabled the devices to be made smaller. Although this approach has been remarkably successful, critical device dimensions now approach atomic length scales, so that further size scaling becomes untenable. "Researchers have been forced to look beyond the simple reduction of size to develop future generations of electronic devices," states NRL senior scientist Dr. Berry Jonker. "Electrical generation, manipulation and detection of significant spin polarization in silicon at temperatures that meet commercial and military requirements are essential to validate spin as an alternative to charge for a device technology beyond Moore's Law."

Using ferromagnetic metal / silicon dioxide contacts on silicon, NRL scientists Connie Li, Olaf van 't Erve and Jonker electrically generate and detect spin accumulation and precession in the silicon transport channel at temperatures up to 225˚C, and conclude that the spin information can be transported in the silicon over distances readily compatible with existing fabrication technology. They thus overcome a major obstacle in achieving control of the spin variable at temperatures required for practical applications in the most widely utilized semiconductor.

To make a semiconductor spintronic device, one needs contacts that can both generate a current of spin-polarized electrons (called a spin injector), and detect the spin polarization of the electrons (spin detector) in the semiconductor. Because the magnetic contact interface is likely to introduce additional scattering and spin relaxation mechanisms not present in the silicon bulk, the region of the semiconductor directly beneath the contact is expected to be a critical factor in the development of any future spin technology. The NRL scientists probe the spin environment directly under the magnetic metal / silicon dioxide contact using the three terminal geometry illustrated in the accompanying figure. Demonstration of spin precession and dephasing in a magnetic field transverse to the injected spin orientation, known as the Hanle effect, is conclusive evidence of spin accumulation, and enables a direct measure of the spin lifetime, a critical parameter for device operation. The NRL researchers observed Hanle precession of the electron spin accumulation in the silicon channel under the contact for biases corresponding to both spin injection and extraction, and determine the corresponding spin lifetimes.

Electronic states can form at the contact interface and introduce deleterious effects for both charge and spin transport. These undesirable states can serve as traps which prevent propagation of either charge or spin in the silicon channel. In bulk silicon, the spin lifetime is known to depend upon the carrier density, and generally decreases as the electron density increases.. "In this study we show that the spin lifetime determined from our measurements changes systematically as one changes carrier concentration of the particular silicon sample used," adds Jonker. "Our results were obtained for a number of different carrier densities and show this trend, thus making it very clear that we obtain spin injection and accumulation in the silicon itself rather than in interface defect states." The result of this research rules out spin accumulation in interface states and demonstrates spin injection, accumulation and precession in the silicon channel.


'/>"/>

Contact: Daniel Parry
daniel.parry@nrl.navy.mil
202-767-2541
Naval Research Laboratory
Source:Eurekalert  

Related biology technology :

1. Clemson scientists put a (nano) spring in their step
2. City of Hope Helps KGI Launch New Management Training Program for Scientists
3. University of Pennsylvania scientists move optical computing closer to reality
4. Scientists grow nanonets able to snare added energy transfer
5. The National Cancer Institute Joins the Global Community of Scientists Now Using BIOMARKERcenter From Thomson Reuters
6. Scientists peel away the mystery behind golds catalytic prowess
7. SACHEM Launches 2-D HPLC e-Learning Program : New e-Learning Program Teaches Scientists How to Better Analyze and Prove Product Purity Through Greater Sensitivity and Precision in Identification of Trace Components
8. Vermillion and Stanford Scientists Receive Best Research Award From the PAD Coalition
9. Brewing better beer: Scientists determine the genomic origins of lager yeasts
10. Tengion Scientists Publish Positive Preclinical Findings With Neo-Organ Demonstrating Long-term Durability and Growth With Skeletal Maturation
11. CU scientists create worlds thinnest balloon -- just one atom thick
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NRL scientists achieve high temperature milestone in silicon spintronics
(Date:10/11/2017)... Netherlands and LAGUNA HILLS, Calif. ... Institute of Cancer Research, London (ICR) ... MMprofilerâ„¢ with SKY92, SkylineDx,s prognostic tool to risk-stratify patients with ... known as MUK nine . The University of ... which is partly funded by Myeloma UK, and ICR will ...
(Date:10/10/2017)... ... 2017 , ... San Diego-based team building and cooking events company, Lajollacooks4u, has ... The bold new look is part of a transformation to increase awareness, appeal to ... period. , It will also expand its service offering from its signature gourmet cooking ...
(Date:10/10/2017)... Parks Associates announced today that Tom Kerber , Director ... , October 11 in Scottsdale, Arizona . Kerber will ... safety and security products impact the competitive landscape. ... Parks Associates: Smart Home Devices: Main Purchase Driver ... "The residential security market has experienced continued growth, and the introduction of ...
(Date:10/9/2017)... , Oct. 9, 2017  BioTech Holdings announced ... by which its ProCell stem cell therapy prevents ... ischemia.  The Company, demonstrated that treatment with ProCell ... limbs saved as compared to standard bone marrow ... HGF resulted in reduction of therapeutic effect.  ...
Breaking Biology Technology:
(Date:4/5/2017)... KEY FINDINGS The global market ... CAGR of 25.76% during the forecast period of 2017-2025. ... for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is segmented ... The stem cell market of the product is segmented ...
(Date:3/30/2017)... NEW YORK , March 30, 2017 ... by type (physiological and behavioral), by technology (fingerprint, AFIS, ... recognition, voice recognition, and others), by end use industry ... travel and immigration, financial and banking, and others), and ... Europe , Asia Pacific ...
(Date:3/24/2017)... Research and Markets has announced the addition of the "Global ... to 2025" report to their offering. ... The Global Biometric Vehicle Access System Market ... the next decade to reach approximately $1,580 million by 2025. ... for all the given segments on global as well as regional ...
Breaking Biology News(10 mins):