Navigation Links
NRL demonstrates high durability of nanotube transistors to the harsh space environment
Date:9/18/2012

WASHINGTON--U.S. Naval Research Laboratory electronics science and technology engineers demonstrate the ability of single walled carbon nanotube transistors (SWCNTs) to survive the harsh space environment, investigating the effects of ionizing radiation on the crystalline structures and further supporting the development of SWCNT-based nanoelectronics for use in harsh radiation environments.

"One of the primary challenges for space electronics is mitigating the susceptibility of prolonged exposure to radiation that exists in the charged particle belts that encircle Earth," said Cory Cress, materials research engineer. "These are the first controlled demonstrations showing little performance degradation and high tolerance to cumulative ionizing radiation exposure."

Radiation effects take two forms, transient effects and cumulative effects. The former, referred to as single effect transients (SETs), result from a direct strike by an ionizing particle in space that causes a current pulse in the device. If this pulse propagates through the circuit it can cause data corruption that can be extremely detrimental to someone that relies on that signal, such as a person using GPS for navigation. NRL researchers have recently predicted that such effects are nearly eliminated for SWCNT-based nanoelectronics due to their small size, low density, and inherent isolation from neighboring SWCNTs in a device.

The cumulative effects in traditional electronics results from trapped charges in the oxides of the devices, including the gate oxide and those used to isolate adjacent devices, the latter being primary source of radiation-induced performance degradation in state-of-the-art complementary metaloxide semiconductor (CMOS) devices. The effect is manifested as a shift in the voltage needed to turn the transistor on or off. This initially results in power leakage, but can eventually cause failure of the entire circuit.

By developing a SWCNT structure with a thin gate oxide made from thin silicon oxynitride, NRL researchers recently demonstrated SWCNT transistors that do not suffer from such radiation-induced performance changes. This hardened dielectric material and naturally isolated one-dimensional SWCNT structure makes them extremely radiation tolerant.

The ability for SWCNT-based transistors to be both tolerant to transient and cumulative effects potentially enables future space electronics with less redundancy and error-correction circuitry, while maintaining the same quality of fidelity. This reduction in overhead alone would greatly reduce power and improve performance over existing space-electronic systems even if the SWCNT-based transistors operate at the same speed as current technologies. Even greater benefits are foreseeable in the future, once devices are developed that exceed the performance of silicon-based transistors.


'/>"/>

Contact: Daniel Parry
nrl1030@ccs.nrl.navy.mil
202-767-2541
Naval Research Laboratory
Source:Eurekalert  

Related biology technology :

1. NKTR-102 Demonstrates Synergistic Anti-Tumor Activity in Combination with Pegylated Liposomal Doxorubicin in Platinum-Resistant Ovarian Cancer
2. AtheroNova Inc. Preclinical Study Demonstrates 95% Reduction in Arterial Plaque Formation
3. Post Heart Attack Recovery Not Aided By Stem Cell Injections, But Trial Demonstrates Promise
4. Entinostat Demonstrates Activity in Hodgkins Lymphoma
5. OrbusNeichs Combo Dual Therapy Stent™ Demonstrates Favorable Clinical and Safety Outcomes at 12-Month Follow-Up
6. Nitor Group Demonstrates Direct Product Suite at Direct Implementation and Adoption Summit May 31-June 1
7. New England Biolabs Demonstrates Support for Interactive Scientific Literature by Collaborating with AQnowledge
8. Hark! Group demonstrates first heralded single photon source made from silicon
9. Dyadic Demonstrates Industry-leading Biofuels Enzyme Performance
10. New biosensor benefits from melding of carbon nanotubes, DNA
11. Carbon nanotube forest camouflages 3-D objects
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
NRL demonstrates high durability of nanotube transistors  to the harsh space environment
(Date:10/12/2017)... ... October 12, 2017 , ... The ... three Winners and six Finalists of the 2017 Blavatnik Regional Awards for Young ... Family Foundation and administered by the New York Academy of Sciences to honor ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... Rosalind™, the first-ever genomics analysis platform specifically designed for life science researchers ... honor of pioneering researcher Rosalind Franklin, who made a major contribution to ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ., ... a Webinar titled, “Pathology is going digital. Is your lab ready?” with Dr. ... best practices and how Proscia improves lab economics and realizes an increase in ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced ... to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B ... to cross the cell membrane and bind intracellular STAT3 and inhibit its function. ...
Breaking Biology Technology:
(Date:5/23/2017)... -- Hunova, the first robotic gym for the rehabilitation and functional motor sense ... Genoa, Italy . The first 30 robots will be available ... USA . The technology was developed and patented at the IIT ... Movendo Technology thanks to a 10 million euro investment from entrepreneur Sergio ... ...
(Date:4/24/2017)... WASHINGTON , April 24, 2017 ... counsel and partner with  Identity Strategy Partners, LLP ... "With or without President Trump,s March 6, ... Foreign Terrorist Entry , refugee vetting can be instilled ... refugee resettlement. (Right now, all refugee applications are ...
(Date:4/13/2017)... MONICA, Calif. , April 13, 2017 ... New York will feature emerging and evolving ... Summits. Both Innovation Summits will run alongside the expo ... of speaker sessions, panels and demonstrations focused on trending ... coast,s largest advanced design and manufacturing event will take ...
Breaking Biology News(10 mins):